ﻻ يوجد ملخص باللغة العربية
Many gravitationally lensed quasars exhibit flux ratio anomalies that cannot be explained under the hypothesis that the lensing potential is smooth on scales smaller than one kpc. Micro-lensing by stars is a natural source of granularity in the lens potential. The character of the expected fluctuations due to micro-lensing depends sensitively on the relative surface densities of micro-lenses (stars) and smoothly distributed (dark) matter. Observations of flux ratios may therefore be used to infer the ratio of stellar to dark matter along the line of sight -- typically at impact parameters 1.5 times the half light radius. Several recently discovered systems have anomalies that would seem to be explained by micro-lensing only by demanding that 70-90% of the matter along the line of sight be smoothly distributed.
To set useful limits on the abundance of small-scale dark matter halos (subhalos) in a galaxy scale, we have carried out mid-infrared imaging and integral-field spectroscopy for a sample of quadruple lens systems showing anomalous flux ratios. These
We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars or as unbarred galaxies, and make use of HI mass and kinematic info
Emission line galaxies (ELGs) are used in several ongoing and upcoming surveys (SDSS-IV/eBOSS, DESI) as tracers of the dark matter distribution. Using a new galaxy formation model, we explore the characteristics of [OII] emitters, which dominate opti
We examine the dark matter properties of nearby early-type galaxies using planetary nebulae (PNe) as mass probes. We have designed a specialised instrument, the Planetary Nebula Spectrograph (PN.S) operating at the William Herschel telescope, with th
We examine two extreme models for the build-up of the stellar component of luminous elliptical galaxies. In one case, we assume the build-up of stars is dissipational, with centrally accreted gas radiating away its orbital and thermal energy; the dar