ترغب بنشر مسار تعليمي؟ اضغط هنا

Circumnuclear Shock and Starburst in NGC 6240: Near-IR Imaging and Spectroscopy with Adaptive Optics

280   0   0.0 ( 0 )
 نشر من قبل Tamara Bogdanovic
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained adaptive optics, high spatial resolution (0.15 arcsecond) K-band spectra and images of the region around the two active nuclei in NGC 6240 which show the presence of circumnuclear shocks. The data are consistent with the thermal excitation mechanism being the dominant one in the nuclear region. UV fluorescence and associative detachment may also contribute to the fraction of the energy emitted through molecular hydrogen transitions. The near-IR continuum emission appears closely associated with the two active nuclei. The morphological similarities between the near-IR images and the Chandra X-ray images indicate the same mechanisms may be responsible for the emission in near-IR and X-ray band.

قيم البحث

اقرأ أيضاً

We present high resolution images of NGC 2071-IR in the $J$, $H$, and $K$ bands and in the emission at 2.12 $mu$m of the v=$1-0$ $S$(1) line of molecular hydrogen. We also present moderate resolution K-band spectra of two young stellar objects, IRS 1 and IRS 3, within NGC 2071-IR, that are candidates sources of one or more of the outflows observed in the region. Two of the eight originally identified infrared point sources in NGC 2071-IR are binaries, and we identifiy two new sources, one coincident with the radio source VLA-1 and highly reddened. The H2 $Q$(3)/$S$(1) line intensity ratios at IRS 1 and IRS 3 yield high and very high extinctions, respectively, to them, as is implied by their near-infrared colors and K-band continuum slopes. The spectra also reveal the presence of hot, dense circumstellar molecular gas in each, suggesting that both are strong candidates for having energetic molecular outflows. We agree with a previous suggestion that IRS 1 is the likely source of an E-W-oriented outflow and conclude that this outflow is probably largely out of the plane of the sky. We also conclude that if IRS 3 is the source of the large scale NE-SW outflow, as has been previously suggested, its jet/wind must precess in order to explain the angular width of that outflow. We discuss the natures of the point sources and their probable contributions, if any, to the complex morphology of the H2 line emission.
121 - C. E. Max 2004
We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are cle arly elongated, with considerable sub-structure within each nucleus. In K band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern sub-nucleus is more highly reddened. Based upon the nuclear separation measured at 5 GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K band, and is located slightly to the north of the brightest point in K band. Within the South nucleus there is strong H2 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H2 emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K-band with Keck adaptive optics. We suggest that these point-sources represent young star clusters formed in the course of the merger.
105 - D. Rouan , F. Rigaut , D. Alloin 1998
We present diffraction-limited near-IR images in J, H and K of the nucleus of NGC 1068, obtained with the Adaptive Optics system {Pueo} at CFHT. The achieved resolution (0.12) reveals several components, particularly prominent on the [J-K] image: a) an unresolved, conspicuous core (size < 9 pc); b) an elongated structure at P.A. ~102 deg, beginning to show up at radius ~ 15 pc; c) a S-shaped structure with radial extent ~ 20 pc, including a bar-like central elongation at P.A. ~ 15 deg and two short spiral arms. The K core is at the location of the putative central engine (radio source S1) : the core is likely the emission from the hot inner walls of the dust/molecular torus. The extremely red colors of the central 0.2, [J-K]=7.0, [H-K]=3.8, lead to an extinction Av > 25. The elongated structure at P.A.~ 102 deg may trace the presence of cooler dust within and around the torus. This interpretation is supported by two facts : a) the elongated structure is perpendicular to the local radio jet originating at S1; b) its direction follows exactly that of the disk of ionized gas recently found with the VLBA. The S-shaped feature suggests an extremely compact barred spiral structure, that would be the innermost of a series of nested spiral structures, as predicted by simulations. This is supported by the inner stellar distribution - deduced from the J image - which clearly follows an exponential disk with a 19 pc scale-length, precisely that expected from the rotation of a bar.
100 - T. L. Beck 2002
We present the results of a high resolution near infrared adaptive optics survey of the young obscured star forming region NGC 2024. Out of the total 73 stars detected in the adaptive optics survey of the cluster, we find 3 binaries and one triple. T he resulting companion star fraction, 7+/-3% in the separation range of 0.35-2.3 (145-950 AU), is consistent with that expected from the multiplicity of mature solar-type stars in the local neighborhood. Our survey was sensitive to faint secondaries but no companions with Delta K > 1.2 magnitudes are detected within 2 of any star. The cluster has a K luminosity function that peaks at ~12, and although our completeness limit was 17.7 magnitude at K, the faintest star we detect had a K magnitude of 16.62.
We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 lines are detected, including CO J=4-3 through J=13-12, 6 H2O rotational lines, and [CI] and [NII] fine-structure lines. The CO to continuum lumin osity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the CO ladders of NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for the excitation of the gas in NGC 6240. We applied both C and J shock models to the H2 v=1-0 S(1) and v=2-1 S(1) lines and the CO rotational ladder. The CO ladder is best reproduced by a model with shock velocity v_s=10 km s^-1 and a pre-shock density n_H=5 * 10^4 cm^-3. We find that the solution best fitting the H2 lines is degenerate: The shock velocities and number densities range between v_s = 17 - 47 km s^-1 and n_H=10^7 - 5 * 10^4 cm^-3, respectively. The H2 lines thus need a much more powerful shock than the CO lines. We deduce that most of the gas is currently moderately stirred up by slow (10 km s^-1) shocks while only a small fraction (< 1 percent) of the ISM is exposed to the high velocity shocks. This implies that the gas is rapidly loosing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا