ترغب بنشر مسار تعليمي؟ اضغط هنا

Helical Tomography of an Accretion Disk by Superhump Light Curves of the 2001 Outburst of WZ Sagittae

285   0   0.0 ( 0 )
 نشر من قبل Yoji Osaki
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. Osaki




اسأل ChatGPT حول البحث

A new method for analyzing complex superhump light curves for the 2001 outburst of WZ Sagittae is proposed. The complexity arises because intrinsically time-varying and non-axisymmetric distributions of superhump light sources are coupled with the aspect effects around the binary orbital phase because of its high orbital inclination. The new method can disentangle these complexities by separating the non-axisymmetric spatial distribution in the disk from the time variation with the superhump period. It may be called a helical tomography of an accretion disk because it can reconstruct a series of disk images (i.e., disks azimuthal structures) at different superhump phases. The power spectral data of superhump light curves of the 2001 outburst of WZ Sge by Patterson et al.(2002,PASP,114,721) are now interpreted under a new light based on the concept of helical tomography, and the azimuthal wave numbers of various frequency modes are identified. In particular, a frequency component, $nomega_0-Omega$, where $omega_0$ and $Omega$ are the orbital frequency and a low frequency of the apsidal precession of the eccentric disk, is understood as an $(n-1)$-armed traveling wave in the disk. A vigorous excitation of a wave component of $cos(2Theta-3omega_0 t)$ in the first week of the superhump era of WZ Sge, where $Theta$ is the azimuthal angle, supports Lubows (1991) theory of non-linear wave coupling of the eccentric Lindblad resonance for the superhump phenomenon. This method can in principle be applied to other SU UMa stars with high orbital inclination if light curves are fully covered over the beat cycle.

قيم البحث

اقرأ أيضاً

213 - J. Patterson 2002
We report the results of a worldwide campaign to observe WZ Sagittae during its 2001 superoutburst. After a 23-year slumber at V=15.5, the star rose within 2 days to a peak brightness of 8.2, and showed a main eruption lasting 25 days. The return to quiescence was punctuated by 12 small eruptions, of ~1 mag amplitude and 2 day recurrence time; these echo outbursts are of uncertain origin, but somewhat resemble the normal outbursts of dwarf novae. After 52 days, the star began a slow decline to quiescence. Periodic waves in the light curve closely followed the pattern seen in the 1978 superoutburst: a strong orbital signal dominated the first 12 days, followed by a powerful /common superhump/ at 0.05721(5) d, 0.92(8)% longer than P_orb. The latter endured for at least 90 days, although probably mutating into a late superhump with a slightly longer mean period [0.05736(5) d]. The superhump appeared to follow familiar rules for such phenomena in dwarf novae, with components given by linear combinations of two basic frequencies: the orbital frequency omega_o and an unseen low frequency Omega, believed to represent the accretion disks apsidal precession. Long time series reveal an intricate fine structure, with ~20 incommensurate frequencies. Essentially all components occurred at a frequency n(omega_o)-m(Omega), with m=1, ..., n. But during its first week, the common superhump showed primary components at n (omega_o)-Omega, for n=1, 2, 3, 4, 5, 6, 7, 8, 9 (i.e., m=1 consistently); a month later, the dominant power shifted to components with m=n-1. This may arise from a shift in the disks spiral-arm pattern, likely to be the underlying cause of superhumps. The great majority of frequency components ... . (etc., abstract continues)
We present a time series analysis of Hubble Space Telescope observations of WZ Sge obtained in 2001 September, October, November and December as WZ Sge declined from its 2001 July superoutburst. Previous analysis of these data showed the temperature of the white dwarf decreased from ~29,000 K to ~18,000 K. In this study we binned the spectra over wavelength to yield ultraviolet light curves at each epoch that were then analyzed for the presence of the well-known 27.87 s and 28.96 s oscillations. We detect the 29 s periodicity at all four epochs, but the 28 s periodicity is absent. The origin of these oscillations has been debated since their discovery in the 1970s and competing hypotheses are based on either white dwarf non-radial g-mode pulsations or magnetically-channelled accretion onto a rotating white dwarf. By analogy with the ZZ Ceti stars, we argue that the non-radial g-mode pulsation model demands a strong dependence of pulse period on the white dwarfs temperature. However, these observations show the 29 s oscillation is independent of the white dwarfs temperature. Thus we reject the white dwarf non-radial g-mode pulsation hypothesis as the sole origin of the oscillations. It remains unclear if magnetically-funnelled accretion onto a rapidly rotating white dwarf (or belt on the white dwarf) is responsible for producing the oscillations. We also report the detection of a QPO with period ~18 s in the September light curve. The amplitudes of the 29 s oscillation and the QPO vary erratically on short timescales and are not correlated with the mean system brightness nor with each other.
48 - Erik Kuulkers 2001
WZ Sge has shown superoutbursts in 1913, 1946 and 1978. On 2001 July 23 a new outburst was announced, about 10 years `too early. Target of opportunity satellite observations with Chandra, FUSE, HST and RXTE were performed throughout the outburst. Fro m the ground WZ Sge was monitored by numerous professional and amateur astronomers, in the optical, IR and radio. We give an account of the first exciting results from these multi-wavelength observations.
We report a long-term (1961-2017) study of the eclipse times in the dwarf nova WZ Sagittae, in an effort to learn its rate of orbital-period change. Some wiggles with a time scale of 20-50 years are apparent, and a connection with the 23-year interva l between dwarf-nova eruptions is possible. These back-and-forth wiggles dominate the O-C diagram, and prevent a secure measurement of the steady rate of orbital-period change. The line, it is drawn, the curse, it is cast. The slow one now will later be fast... For the times, they are a-changin. - Dylan (1963)
Microlensing perturbations to the magnification of gravitationally lensed quasar images are dependent on the angular size of the quasar. If quasar variability at visible wavelengths is caused by a change in the area of the accretion disk, it will aff ect the microlensing magnification. We derive the expected signal, assuming that the luminosity scales with some power of the disk area, and estimate its amplitude using simulations. We discuss the prospects for detecting the effect in real-world data and for using it to estimate the logarithmic slope of the luminositys dependence on disk area. Such an estimate would provide a direct test of the standard thin accretion disk model. We tried fitting six seasons of the light curves of the lensed quasar HE 0435-1223 including this effect as a modification to the Kochanek et al. (2006) approach to estimating time delays. We find a dramatic improvement in the goodness of fit and relatively plausible parameters, but a robust estimate will require a full numerical calculation in order to correctly model the strong correlations between the structure of the microlensing magnification patterns and the magnitude of the effect. We also comment briefly on the effect of this phenomenon for the stability of time delay estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا