ترغب بنشر مسار تعليمي؟ اضغط هنا

The Globular Cluster Systems of NGC 3258 and NGC 3268 in the Antlia Cluster

94   0   0.0 ( 0 )
 نشر من قبل Boris Dirsch
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Antlia galaxy cluster is the third nearest galaxy cluster after Virgo and Fornax. We used the wide-field MOSAIC camera of the 4-m CTIO telescope to search in the brightest cluster galaxies for globular cluster systems, which were detected in the two larger ellipticals -- NGC 3258 and NGC 3268. These galaxies each contain several thousand clusters; NGC 3258 more than NGC 3268. The color distributions of the globular cluster systems are clearly bimodal. The peak colors agree with those of other ellipticals. The radial number density profiles of the globular cluster systems are indistinguishable for the two galaxies and no difference in the distribution of red and blue clusters - as observed in other elliptical galaxies - can be seen. The light profile of NGC 3268 appears to be similar to that of NGC 1399, the central galaxy of the Fornax cluster. NGC 3258 has a light profile which is steeper at large radii. Both galaxies exhibit color gradients, becoming bluer outwards.In NGC 3268, the color and morphology in the inner 3 indicate the presence of an inner dusty disk. The globular cluster systems closely trace the galaxy light in the studied radial regime. The elongation of the cluster systems of both galaxies is approximately aligned at large radii with the connecting axis of the two galaxies.We find specific frequencies within a radial range of 4of S_N=3.0+-2.0 for NGC 3268 and S_N=6.0+-2.5 for NGC 3258. As a byproduct resulting from surveying our wide-field frames, we describe a strange absorption feature in the Antlia spiral galaxy NGC 3269, which we argue might be a tiny galactic dust cloud projected onto NGC 3269.



قيم البحث

اقرأ أيضاً

We present a deep VLT photometry in the regions surrounding the two dominant galaxies of the Antlia cluster, the giant ellipticals NGC 3258 and NGC 3268. We construct the luminosity functions of their globular cluster systems (GCSs) and determine the ir distances through the turn-over magnitudes. These distances are in good agreement with those obtained by the SBF method. There is some, but not conclusive, evidence that the distance to NGC 3268 is larger by several Mpc. The GCSs colour distributions are bimodal but the brightest globular clusters (GCs) show a unimodal distribution with an intermediate colour peak. The radial distributions of both GCSs are well fitted by de Vaucouleurs laws up to 5 arcmin. Red GCs present a steeper radial density profile than the blue GCs, and follow closely the galaxies brightness profiles. Total GC populations are estimated to be about 6000+/-150 GCs in NGC 3258 and 4750+/-150 GCs in NGC 3268. We discuss the possible existence of GCs in a field located between the two giant galaxies (intracluster GCs). Their luminosity functions and number densities are consistent with the two GCSs overlapping in projection.
We present the first compact stellar systems with luminosities in the range of ultra-compact dwarfs (UCDs), discovered in the Antlia galaxy cluster (-10.5 < M_V < -11.6). The magnitude limit between UCDs and globular clusters (CGs) is discussed. By m eans of imaging from VLT (FORS1), CTIO (MOSAIC), and the HST (ACS) archive, eleven UCDs/bright GCs are selected on the basis of photometry and confirmed as Antlia members through radial velocities measured on new GEMINI (GMOS-S) spectra. In addition, nine UCD candidates are identified taking into account properties derived from their surface brightness profiles. All of them, members and candidates, are located in the proximity of NGC,3258, one of the two brightest elliptical galaxies in the cluster core. Antlia UCDs in this sample present absolute magnitudes fainter than M_V ~ -11.6 mag and most of them have colours within the blue GC range, falling only two within the red GC range. Effective radii measured for the ones lying on the ACS field are in the range R_eff = 3 - 11 pc and are similar to equivalent objects in other clusters, obtained from the literature. The UCD sample shares the same behaviour on the size-luminosity plane: a linear relation between R_eff and M_V is present for UCDs brighter than M_V ~ -10.5 - -11 mag while no trend is detected for fainter ones, that have an approximately constant R_eff. The projected spatial distribution of UCDs, GCs and X-ray emission points to an ongoing merger between two Antlia groups, dominated by NGC 3258 and NGC 3268. Nuclei of dwarf elliptical galaxies and blue UCDs share the same locus on the colour-magnitude diagram, supporting the hypothesis that some blue UCDs may be remnants of stripped nucleated dwarfs.
We present new metallicity estimates for globular cluster (GC) candidates in the Sd spiral NGC 300, one of the nearest spiral galaxies outside the Local Group. We have obtained optical spectroscopy for 44 Sculptor Group GC candidates with the Boller and Chivens (B&C) spectrograph on the Baade Telescope at Las Campanas Observatory. There are 2 GCs in NGC 253 and 12 objects in NGC 300 with globular-cluster-like spectral features, 9 of which have radial velocities above 0 km/s. The remaining three, due to their radial velocities being below the expected 95% confidence limit for velocities of NGC 300 halo objects, are flagged as possible foreground stars. The non-clusterlike candidates included 13 stars, 15 galaxies, and an HII region. One GC, four galaxies, two stars, and the HII region from our sample were identified in archival Hubble Space Telescope images. For the GCs, we measure spectral indices and estimate metallicities using an empirical calibration based on Milky Way GCs. The GCs of NGC 300 appear similar to those of the Milky Way. Excluding possible stars and including clusters from the literature, the GC system (GCS) has a velocity dispersion of 68 km/s, and has no clear evidence of rotation. The mean metallicity for our full cluster sample plus one literature object is [Fe/H] = -0.94, lying above the relationship between mean GC metallicity and overall galaxy luminosity. Excluding the three low-velocity candidates, we obtain a mean [Fe/H] = -0.98, still higher than expected, raising the possibility of significant foreground star contamination even in this sample. Visual confirmation of genuine GCs using high-resolution space-based imagery could greatly reduce the potential problem of interlopers in small samples of GCSs in low-radial-velocity galaxies.
We present the results of a commissioning campaign to observe Galactic globular clusters for the search of microlensing events. The central 10 X 10 region of the globular cluster NGC 5024 was monitored using the 2-m Himalayan Chandra Telescope in R-b and for a period of about 8 hours on 24 March 2010. Light curves were obtained for nearly 10,000 stars, using a modified Difference Image Analysis (DIA) technique. We identified all known variables within our field of view and revised periods and status of some previously reported short-period variables. We report about eighty new variable sources and present their equatorial coordinates, periods, light curves and possible types. Out of these, 16 are SX Phe stars, 10 are W UMa-type stars, 14 are probable RR Lyrae stars and 2 are detached eclipsing binaries. Nine of the newly discovered SX Phe stars and two eclipsing binaries belong to the Blue Straggler Star (BSS) population.
We use deep images taken with the Advanced Camera for Surveys on board the Hubble Space Telescope of the disk galaxy NGC 891, to search for globular cluster candidates. This galaxy has long been considered to be a close analog in size and structure t o the Milky Way and is nearly edge-on, facilitating studies of its halo population. These extraplanar ACS images, originally intended to study the halo field-star populations, reach deep enough to reveal even the faintest globular clusters that would be similar to those in the Milky Way. From the three pointings we have identified a total of 43 candidates after culling by object morphology, magnitude, and colour. We present (V,I) photometry for all of these, along with measurements of their effective radius and ellipticity. The 16 highest-rank candidates within the whole sample are found to fall in very much the same regions of parameter space occupied by the classic Milky Way globular clusters. Our provisional conclusion from this survey is that the total globular cluster population in NGC 891 as a whole may be almost as large as that of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا