ترغب بنشر مسار تعليمي؟ اضغط هنا

The low-level radial velocity variability in Barnards star (=GJ 699). Secular acceleration, indications for convective redshift, and planet mass limits

43   0   0.0 ( 0 )
 نشر من قبل Martin Kuerster
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Kuerster




اسأل ChatGPT حول البحث

We report results from 2 1/2 yr of high precision radial velocity (RV) monitoring of Barnards star. The high RV measurement precision of the VLT-UT2+UVES of 2.65 m/s made the following findings possible. (1) The first detection of the change in the RV of a star caused by its space motion (RV secular acceleration). (2) An anti-correlation of the measured RV with the strength of the filling-in of the Halpha line by emission. (3) Very stringent mass upper limits to planetary companions. Using only data from the first 2 years, we obtain a best-fit value for the RV secular acceleration of 5.15+/-0.89 m/s/yr. This agrees with the predicted value of 4.50 m/s/yr based on the Hipparcos proper motion and parallax combined with the known absolute radial velocity of the star. When the RV data of the last half-year are added the best-fit slope is strongly reduced to 2.97+/-0.51 m/s/yr suggesting the presence of additional RV variability in the star. Part of it can be attributed to stellar activity as we demonstrate by correlating the residual RVs with an index that describes the filling-in of the Halpha line by emission. A correlation coefficient of -0.50 indicates that the appearance of active regions causes a blueshift of photospheric absorption lines. Assuming that active regions basically inhibit convection we discuss the possibility that the fundamental (inactive) convection pattern in this M4V star produces a convective redshift. We also determine upper limits to the projected mass msini and to the true mass m of hypothetical planetary companions in circular orbits. For the separation range 0.017-0.98 AU we exclude any planet with msini>0.12 Mjupiter and m>0.86 Mjupiter. Throughout the habitable zone, i.e. 0.034-0.082 AU, we exclude planets with msini>7.5 Mearth and m>3.1 Mneptune.

قيم البحث

اقرأ أيضاً

58 - Artie P. Hatzes 2013
We investigate the radial velocity variation of GJ 581 based on measurements from the HARPS and Keck HIRES spectrographs. A Fourier pre-whitening procedure is able to extract four planetary signals in the HARPS data and two from the Keck data. Combin ing both data sets increases the significance of the four planet signals found by HARPS. This indicates that the Keck data also supports the presence of four planets. A periodogram analysis of the residual radial velocity measurements after removal of the four planetary signals shows several periodic signals that are significant when assessing the false alarm probability via a bootstrap. However, it is demonstrated that these are not due to planetary companions. This analysis is able to confirm the presence of four planets around GJ 581, but not the presence of GJ 581g.
We report initial results from our long term search using precision radial velocities for planetary-mass companions located within a few AU of stars younger than the Sun. Based on a sample of >150 stars, we define a floor in the radial velocity scatt er, sigma_RV, as a function of the chromospheric activity level R_{HK}. This lower bound to the jitter, which increases with increasing stellar activity, sets the minimum planet mass that could be detected. Adopting a median activity-age relationship reveals the astrophysical limits to planet masses discernable via radial velocity monitoring, as a function of stellar age. Considering solar-mass primaries having the mean jitter-activity level, when they are younger than 100 / 300 / 1000 Myr, the stochastic jitter component in radial velocity measurements restricts detectable companion masses to > 0.3 / 0.2 / 0.1 M_Jupiter. These numbers require a large number -- several tens -- of radial velocity observations taken over a time frame longer than the orbital period. Lower companion mass limits can be achieved for stars with less than the mean jitter and/or with an increased number of observations.
43 - R. Alonso 2008
We report on H-band, ground-based observations of a transit of the hot Neptune GJ 436b. Once combined to achieve sampling equivalent to archived observations taken with Spitzer, our measurements reach comparable precision levels. We analyze both sets of observations in a consistent way, and measure the rate of orbital inclination change to be of 0.02+/-0.04 degrees in the time span between the two observations (253.8 d, corresponding to 0.03+/-0.05 degrees/yr if extrapolated). This rate allows us to put limits on the relative inclination between the two planets by performing simulations of planetary systems, including a second planet, GJ 436c, whose presence has been recently suggested (Ribas et al. 2008). The allowed inclinations for a 5 M_E super-Earth GJ 436c in a 5.2 d orbit are within ~7 degrees of the one of GJ 436b; for larger differences the observed inclination change can be reproduced only during short sections (<50%) of the orbital evolution of the system. The measured times of three transit centers of the system do not show any departure from linear ephemeris, a result that is only reproduced in <1% of the simulated orbits. Put together, these results argue against the proposed planet candidate GJ 436c.
Accounting for stellar activity is a crucial component of the search for ever-smaller planets orbiting stars of all spectral types. We use Doppler imaging methods to demonstrate that starspot induced radial velocity variability can be effectively red uced for moderately rotating, fully convective stars. Using starspot distributions extrapolated from sunspot observations, we adopt typical M dwarf starspot distributions with low contrast spots to synthesise line profile distortions. The distortions are recovered using maximum entropy regularised fitting and the corresponding stellar radial velocities are measured. The procedure is demonstrated for a late-M star harbouring an orbiting planet in the habitable zone. The technique is effective for stars with vsini = 1-10 km/s, reducing the stellar noise contribution by factors of nearly an order of magnitude. With a carefully chosen observing strategy, the technique can be used to determine the stellar rotation period and is robust to uncertainties such as unknown stellar inclination. While demonstrated for late-type M stars, the procedure is applicable to all spectral types.
124 - Nad`ege Meunier 2021
Stellar activity due to different processes (magnetic activity, photospheric flows) affects the measurement of radial velocities (RV). Radial velocities have been widely used to detect exoplanets, although the stellar signal significantly impacts the detection and characterisation performance, especially for low mass planets. On the other hand, RV time series are also very rich in information on stellar processes. In this lecture, I review the context of RV observations, describe how radial velocities are measured, and the properties of typical observations. I present the challenges represented by stellar activity for exoplanet studies, and describe the processes at play. Finally, I review the approaches which have been developed, including observations and simulations, as well as solar and stellar comparisons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا