ترغب بنشر مسار تعليمي؟ اضغط هنا

Propagation velocities of gas rings in collisional ring galaxies

56   0   0.0 ( 0 )
 نشر من قبل Dmitriy Bizyaev
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The propagation velocity of the first gas ring in collisional ring galaxies, i.e. the velocity at which the maximum in the radial gas density profile propagates radially in the galactic disk, is usually inferred from the radial expansion velocity of gas in the first ring. Our numerical hydrodynamics modeling of ring galaxy formation however shows that the maximum radial expansion velocity of gas in the first ring ($v_{gas}$) is invariably below the propagation velocity of the first gas ring itself ($v_{ring}$). Modeling of the Cartwheel galaxy indicates that the outer ring is currently propagating at $v_{ring} approx$ 100 km/s, while the maximum radial expansion velocity of gas in the outer ring is currently $v_{gas} approx$ 65 km/s. Modeling of the radial B-V/V-K color gradients of the Cartwheel ring galaxy also indicates that the outer ring is propagating at $v_{ring} ge $ 90 km/s. We show that a combined effect of inclination, finite thickness, and warping of the Cartwheels disk might be responsible for the lack of angular difference in the peak positions found for the azimuthally averaged $Halpha$, K and B surface brightness profiles of the Cartwheels outer ring. Indeed, the radial $Halpha$ surface brightness profiles obtained along the Cartwheels major axis, where effects of inclination and finite thickness are minimized, do peak exterior to those at K- and B-bands. The angular difference in peak positions implies $v_{ring}$ = 110 km/s, which is in agreement with the model predictions. We briefly discuss the utility of radio continuum emission and spectral line equivalent widths for determining the propagation velocity of gas rings in collisional ring galaxies.



قيم البحث

اقرأ أيضاً

146 - P. N. Appleton 1999
Collisional ring galaxies probably result from a head-on collision between a compact companion galaxy and a gas-rich disk system. We present a review of the discovery of warm dust in five collisional rings observed by ISO which range in total Far-IR luminosity from 10$^{10}$~ $<$ ~L$_{FIR}$ ~$<$ ~10$^{11}$ L$odot$. The results show that in most cases, the mid-IR (MIR) flux is often a significant fraction of the total energy budget of star formation activity in these galaxies (at least 10% even in the least powerful cases). We argue that the MIR emission, when combined with optical and radio observations, allows us to build a more complete picture of activity in these collisional systems. Although not as extreme as ULIRGs, these collisional systems provide low-redshift examples of the early effects of galaxy collisions on the ISM and may be relevant to the collisional assembly of galaxy disk components at high redshift.
We present the results of detailed surface photometry of NGC 3808B and NGC 6286 - two spiral galaxies with possibly forming ring-like structures rotating around major axes of the galaxies. The formation of rings in NGC 3808B and NGC 6286 being accomp anied by accretion of matter on galactic disk results in some interesting gasdynamical and stellardynamical effects in these galaxies. One can note, for instance, peculiar rotation curve of NGC 3808B gaseous disk; strong infrared and H-alpha emission from the galaxies; bending and flaring stellar disks in both galaxies. Our observations clearly illustrate the possibility that polar-ring galaxies may be formed as a result of matter accretion from one galaxy to another.
Rings in S0s are enigmatic features which can however betray the evolutionary paths of particular galaxies. We have undertaken long-slit spectroscopy of five lenticular galaxies with UV-bright outer rings. The observations have been made with the Sou thern African Large Telescope (SALT) to reveal the kinematics, chemistry, and the ages of the stellar populations and the gas characteristics in the rings and surrounding disks. Four of the five rings are also bright in the H-alpha emission line, and the spectra of the gaseous rings extracted around the maxima of the H-alpha equivalent width reveal excitation by young stars betraying current star formation in the rings. The integrated level of this star formation is 0.1-0.2 solar mass per year, with the outstanding value of 1 solar mass per year in NGC 7808. The difference of chemical composition between the ionized gas of the rings which demonstrate nearly solar metallicity and the underlying stellar disks which are metal-poor implies recent accretion of the gas and star formation ignition; the star formation history estimated by using different star formation indicators implies that the star formation rate decreases with e-folding time of less than 1 Gyr. In NGC 809 where the UV-ring is well visible but the H-alpha emission line excited by massive stars is absent, the star formation has already ceased.
122 - R.J. Lavery 2004
We present the results from our program to determine the evolution of the galaxy interaction/merger rate with redshift using the unique star-forming characteristics of collisional ring galaxies. We have identified 25 distant collisional ring galaxy c andidates (CRGCs) in a total of 162 deep Hubble Space Telescope Wide Field/Planetary Camera-2 images obtained from the HST Archives. Based on measured and estimated redshifts, these 25 CRGCs all lie in the redshift interval of 0.1 < z < 1. Using the local collisional ring galaxy volume density and the new ``standard cosmology, we find that in order to account for the number of identified CRGCs in our surveyed fields, the galaxy interaction/merger rate, parameterized as (1 + z)^m, must increase steeply with redshift.We determine a minimum value of m = 5.2 $pm$ 0.7, though m could be as high as 7 or 8. We can rule out a non-evolving (m = 0) and weakly evolving (m = 1-2) galaxy interaction/merger rate at greater than the 4 sigma level of confidence.
The ionization state and oxygen abundance distribution in a sample of polar-ring galaxies (PRGs) were studied from the long-slit spectroscopic observations carried out with the SCORPIO-2 focal reducer at the Russian 6-m telescope. The sample consists of 15 PRGs classified as `the best candidates in the SDSS-based Polar Ring Catalogue. The distributions of line-of-sight velocities of stellar and gaseous components have given kinematic confirmation of polar structures in 13 galaxies in the sample. We show that ionization by young stars dominates in the external parts of polar discs, while shocks have a significant contribution to gas excitation in the inner parts of polar structures. This picture was predicted earlier in a toy model implying the collision between gaseous clouds on polar orbits with the stellar disc gravitational potential well. The exception is a moderately inclined ring to the host galaxy NGC 5014: the accreted gas in the centre has already settled on the main plane and ionized by young stars, while the gas in the internal part of the ring is excited by shocks. The present study three times increases the number of polar structures with an available oxygen abundance estimation. The measured values of the gas metallicity almost do not depend on the galaxy luminosity. The radial [O/H] gradient in the considered polar rings is shallow or absent. No metal-poor gas was detected. We ruled out the scenario of the formation of polar rings due to cold accretion from cosmic filaments for the considered sample of PRGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا