ﻻ يوجد ملخص باللغة العربية
We develop a model for gamma-ray emission from the outer magnetosphere of pulsars (the outer-gap model). The charge depletion causes a large electric field which accelerates electrons and positrons. We solve the electric field with radiation and pair creation processes self-consistently, and calculate curvature spectrum and Inverse-Compton (IC) spectrum. We apply this theory to PSR B0833-45 (Vela) and B1706-44 for which their surface magnetic fields, observed thermal X-rays are similar to each other. We find that each observed cut-off energies of the gamma-rays are well explained. By inclusion of emission outside the gap, the spectrum is in better agreement with the observations than the spectrum arising only from the inside of the gap. The expected TeV fluxes are much smaller than that observed by CANGAROO group in the direction of B1706-44.
One of the most important predictions of any gap model for pulsar magnetospheres is the predicted $gamma$-ray spectra. In the outer gap model, the properties of the synchro-curvature radiation are sensitive to many parameters, whose realistic ranges
We study the gamma-ray emissions from an outer-magnetospheric potential gap around a rotating neutron star. Migratory electrons and positrons are accelerated by the electric field in the gap to radiate copious gamma-rays via curvature process. Some o
A two-dimensional electrodynamic model is used to study particle acceleration and non-thermal emission mechanisms in the pulsar magnetospheres. We solve distribution of the accelerating electric field with the emission process and the pair-creation
With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population
A two-dimensional electrodynamical model is used to study particle acceleration in the outer magnetosphere of a pulsar. The charge depletion from the Goldreich-Julian charge density causes a large electric field along the magnetic field lines. The ch