ﻻ يوجد ملخص باللغة العربية
Our VLA observations of the XMM-Newton/Chandra 13hr deep survey field (see Page et al., this proceedings) result in one of the two deepest 1.4GHz radio maps ever made. Within the 15 radius field covered by the deep X-ray data (0.19 sq deg), a total of 556 radio sources are detected, down to a 4 sigma flux limit of 28uJy. Of the 214 Chandra sources, 55 have radio counterparts. The sub-arcsecond accuracy of the VLA and Chandra positions enable us to determine with high confidence the sources common to both surveys. Here we present the relationship between the X-ray and radio source populations at the faintest radio flux limits yet probed by such a study. We discuss how the X-ray/radio relationship differs as a function of optical morphology, ie between unresolved `stellar objects and well resolved galaxies. We then discuss the origin of the X-ray and radio emission, ie AGN, starburst or a mixture of both, in these two classes of object.
Discerning the exact nature of the faint (sub-mJy) radio population has been historically difficult due to the low luminosity of these sources at most wavelengths. Using deep observations from Chandra/XMM-Newton/Spitzer and ground based follow up we
We present the results of a deep 610 MHz survey of the 1^H XMM/Chandra survey area with the GMRT. The resulting maps have a resolution of ~7 arcsec and an rms noise limit of 60 microJy. To a 5 sigma detection limit of 300 microJy we detect 223 source
We present the X-ray spectra of 86 optically-identified sources in the 13H XMM-Newton/Chandra deep field which have >70 X-ray counts. The sample consists of 50 broad line AGN, 25 narrow emission line galaxies, 6 absorption line galaxies, and 5 Galact
The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by
(abridged) The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick AGN. The large effective area of XMMin the 2--10 and 5--10 keV ba