ﻻ يوجد ملخص باللغة العربية
One of the key questions in solar physics that remains to be answered concerns the strength and the distribution of the magnetic fields at the base of the convection zone. The flux tube dynamics requires that toroidal fields of strength as large as 100 kilogauss be present at the base of the convection zone. The kinetic-magnetic equipartition argument leads to smaller field strengths. For possible detection of these relatively small (compared to pressure effects) fields by helioseismic methods it is important to know the range of the field strengths and their distribution. We estimate a range for the toroidal magnetic field strengths at the base of the convection zone using dynamo simulations in a spherical shell. These simulations involve the distribution of rotation provided by helioseismic
We carry out high-resolution calculations for the stellar convection zone. The main purpose of this study is to investigate the effect of a small-scale dynamo on the differential rotation. The solar differential rotation deviates from the Taylor-Prou
We study the effect of turbulent drift of a large-scale magnetic field that results from the interaction of helical convective motions and differential rotation in the solar convection zone. The principal direction of the drift corresponds to the dir
A magnetic flux tube may be considered both as a separate body and as a confined field. As a field, it is affected both by the cyclonic convection ($alpha$-effect) and differential rotation ($Omega$-effect). As a body, the tube experiences not only a
We present results of two simulations of the convection zone, obtained by solving the full hydrodynamic equations in a section of a spherical shell. The first simulation has cylindrical rotation contours (parallel to the rotation axis) and a strong m
We present three-dimensional numerical simulations of the rise and fragmentation of twisted, initially horizontal magnetic flux tubes which evolve into emerging Omega-loops. The flux tubes rise buoyantly through an adiabatically stratified plasma tha