ترغب بنشر مسار تعليمي؟ اضغط هنا

X-rays in the Orion Nebula Cluster: Constraints on the origins of magnetic activity in pre-main sequence stars

64   0   0.0 ( 0 )
 نشر من قبل Eric Feigelson
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eric D. Feigelson




اسأل ChatGPT حول البحث

A recent Chandra/ACIS observation of the Orion Nebula Cluster detected 1075 sources (Feigelson et al. 2002), providing a uniquely large and well-defined sample to study the dependence of magnetic activity on bulk properties for stars descending the Hayashi tracks. The following results are obtained: (1) X-ray luminosities L_t in the 0.5-8 keV band are strongly correlated with bolometric luminosity with <log L_t/L_bol> = -3.8 for stars with masses 0.7<M<2 Mo, an order of magnitude below the main sequence saturation level; (2) the X-ray emission drops rapidly below this level in some or all stars with 2<M<3 Mo; (3) the presence or absence of infrared circumstellar disks has no apparent relation to X-ray levels; and (4) X-ray luminosities exhibit a slight rise as rotational periods increase from 0.4 to 20 days. This last finding stands in dramatic contrast to the strong anticorrelation between X-rays and period seen in main sequence stars. The absence of a strong X-ray/rotation relationship in PMS stars, and particularly the high X-ray values seen in some very slowly rotating stars, is a clear indication that the mechanisms of magnetic field generation differ from those operating in main sequence stars. The most promising possibility is a turbulent dynamo distributed throughout the deep convection zone, but other models such as alpha-Omega dynamo with `supersaturation or relic core fields are not immediately excluded. The drop in magnetic activity in intermediate-mass stars may reflect the presence of a significant radiative core. The evidence does not support X-ray production in large-scale star-disk magnetic fields.

قيم البحث

اقرأ أيضاً

The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass range (0.7 - 2.3 Msun). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts which are well-characterized at optical and infra-red wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above $10^{31}$ erg/s, in some cases exceeding $10^{32}$ erg/s for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total EMs range between 3 - 8$times10^{54}$ cm$^{-3}$ and are comparable to active coronal sources. Limits on the forbidden to inter-combination line ratios in the He-Like K-shell lines show that we observe a predominantely optically thin plasma with electron densities below $10^{12}$ cm$^{-3}$. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6 to 2.3 Msun classical T Tauri stars shows that coronal activity and possibly coronal loop size increase significantly between ages 0.1 to 10 Myrs.
118 - V. Petit , G. A. Wade , L. Drissen 2008
In massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Al though magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack a detailed understanding of the complex processes responsible. The aim of this study is to examine the relationship between magnetism, stellar winds and X-ray emission of OB stars. In conjunction with a Chandra survey of the Orion Nebula Cluster, we carried out spectropolarimatric ESPaDOnS observations to determine the magnetic properties of massive OB stars of this cluster.
Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle Nebula that have prominent near-infrared (NIR) excess and optical colours typical of pre-main sequence (PMS) stars older than 8 Myr. At least half of those for which spectroscopy exists have a Halpha emission line profile revealing active accretion. In principle, the V-I colours of all these stars would be consistent with those of young PMS objects (< 1 Myr) whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few percent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness, their positions in the colour-magnitude diagram and the weak Li absorption lines of the stars studied spectroscopically suggest that most of them are at least 8 times older than the ~1 Myr-old PMS stars already known in this cluster and could be as old as ~30 Myr. This is the largest homogeneous sample to date of Galactic PMS stars considerably older than 8 Myr that are still actively accreting from a circumstellar disc and it allows us to set a lower limit of 7% to the disc frequency at ~16 Myr in NGC 6611. These values imply a characteristic exponential lifetime of ~6 Myr for disc dissipation.
We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5 - 15 arcmin (0.65 - 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at se parations of 0.13 - 1.12 (60 - 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M_sun is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from theta1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.
We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important for being the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of $N$-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of $7:{rm{M}}_odot$. The only way to recreate the event is if source I is more massive, i.e., $sim20:{rm{M}}_odot$. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا