ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared stellar populations in the central parts of the Milky Way galaxy

136   0   0.0 ( 0 )
 نشر من قبل Jacco van Loon
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near- and mid-IR survey data from DENIS and ISOGAL are used to investigate the structure and formation history of the inner 10 degree (1.4 kpc) of the Milky Way galaxy. Synthetic bolometric corrections and extinction coefficients in the near- and mid-IR are derived for stars of different spectral types, to allow the transformation of theoretical isochrones into observable colour-magnitude diagrams. The observed IR colour-magnitude diagrams are used to derive the extinction, metallicity and age for individual stars. The inner galaxy is dominated by an old population (> 7 Gyr). In addition, an intermediate-age population (200 Myr to 7 Gyr) is detected, which is consistent with the presence of a few hundred Asymptotic Giant Branch stars with heavy mass loss. Furthermore, young stars (< 200 Myr) are found across the inner Bulge. The metallicities of these stellar population components are discussed. These results can be interpreted in terms of an early epoch of intense star formation and chemical enrichment which shaped the bulk of the Bulge and nucleus, and a more continuous star formation history which gradually shaped the disk from the accretion of sub-solar metallicity gas from the halo. A possible increase in star formation about 200 Myr ago might have been triggered by a minor merger. Ever since the formation of the first stars, mechanisms have been at play that mix the populations from the nucleus, Bulge and disk. Luminosity functions across the inner galactic plane indicate the presence of an inclined (bar) structure at > 1 kpc from the galactic centre, near the inner Lindblad resonance. The innermost part of the Bulge, within about 1 kpc from the galactic centre, seems azimuthally symmetric.

قيم البحث

اقرأ أيضاً

117 - T. Bensby , S. Feltzing , A. Gould 2017
The four main findings about the age and abundance structure of the Milky Way bulge based on microlensed dwarf and subgiant stars are: (1) a wide metallicity distribution with distinct peaks at [Fe/H]=-1.09, -0.63, -0.20, +0.12, +0.41; (2) a high fra ction of intermediate-age to young stars where at [Fe/H]>0 more than 35 % are younger than 8 Gyr, (3) several episodes of significant star formation in the bulge 3, 6, 8, and 11 Gyr ago; (4) the `knee in the alpha-element abundance trends of the sub-solar metallicity bulge appears to be located at a slightly higher [Fe/H] (about 0.05 to 0.1 dex) than in the local thick disk.
In the $Gaia$ era stellar kinematics are extensively used to study Galactic halo stellar populations, to search for halo structures, and to characterize the interface between the halo and hot disc populations. We use distribution function-based model s of modern datasets with 6D phase space data to qualitatively describe a variety of kinematic spaces commonly used in the study of the Galactic halo. Furthermore, we quantitatively assess how well each kinematic space can separate radially anisotropic from isotropic halo populations. We find that scaled action space (the ``action diamond) is superior to other commonly used kinematic spaces at this task. We present a new, easy to implement selection criterion for members of the radially-anisotropic $Gaia$-Enceladus merger remnant, which we find achieves a sample purity of 82 per cent in our models with respect to contamination from the more isotropic halo. We compare this criterion to literature criteria, finding that it produces the highest purity in the resulting samples, at the expense of a modest reduction in completeness. We also show that selection biases that underlie nearly all contemporary spectroscopic datasets can noticeably impact the $E-L_{z}$ distribution of samples in a manner that may be confused for real substructure. We conclude by providing recommendations for how authors should use stellar kinematics in the future to study the Galactic stellar halo.
We give here the Table of Contents and clickable links to papers of the proceedings from the workshop Asteroseismology of Stellar Populations in the Milky Way, held in Sesto, 22-26 July 2013. The aim of this workshop was to foster collaborations an d discussions between expert researchers in Galactic evolution, specialists in stellar structure and asteroseismology, and key representatives of extensive ground-based spectroscopic surveys such as APOGEE and the ESO-Gaia Spectroscopic Survey. The workshop was devoted to discussing first results achieved by combining spectroscopic and seismic constraints on populations of stars observed by CoRoT and Kepler, and the relevance of CoRoT and Kepler surveys in the context of future Gaia observations.
We show for the first time, that a fully cosmological hydrodynamical simulation can reproduce key properties of the innermost region of the Milky Way. Our high resolution simulation matches the profile and kinematics of the Milky Ways boxy/peanut-sha ped bulge, and hence we can use it to reconstruct and understand the bulge assembly. In particular, the age dependence of the X-shape morphology of the simulated bulge parallels the observed metallicity dependent split in the red clump stars of the inner Galaxy. We use this feature to derive an observational metric that allows us to quantify when the bulge formed from the disk. The metric we propose can be employed with upcoming survey data to constrain the age of the Milky Way bar. From the split in stellar counts we estimate the formation of the 4~kpc scale bar in the simulation to have happened $t^{rm bar}_{rm form}sim8^{+2}_{-2}$ Gyr ago, in good agreement with conventional methods to measure bar formation in simulations. We test the prospects for observationally differentiating the stars that belong to the bulge/bar compared to the surrounding disk, and find that the inner disk and bulge are practically indistinguishable in both chemistry and ages.
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with large amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy to consist of a superposition of many composite stellar populations belonging to the thin and thick disks, the stellar halo and the bulge, and to be surrounded by a single dark matter halo component. A global model for the Milky Ways gravitational potential is built up self-consistently with the density profiles from the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the distribution of stars in colour-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics by means of the moment method on a (perturbed)-distribution function. Spiral arms perturb the axisymmetric disk distribution functions in the linear response framework of density-wave theory where we present an analytical formula of the so-called `reduction factor using Hypergeometric functions. Finally, we consider an analytical non-axisymmetric model of extinction and an algorithm based on the concept of probability distribution function to handle colour magnitude diagrams with a large number of stars. A genetic algorithm is presented to investigate both the photometric and kinematic parameter space. This galaxy model represents the natural framework to reconstruct the structure of the Milky Way from the heterogeneous data set of surveys such as Gaia-ESO, SEGUE, APOGEE2, RAVE and the Gaia mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا