ترغب بنشر مسار تعليمي؟ اضغط هنا

The WSO, a world-class observatory for the ultraviolet

55   0   0.0 ( 0 )
 نشر من قبل Martin Adrian Barstow
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The World Space Observatory is an unconventional space project proceeding via distributed studies. The present design, verified for feasibilty, consists of a 1.7-meter telescope operating at the second Largangian point of the Earth-Sun system. The focal plane instruments consist of three UV spectrometers covering the spectral band from Lyman alpha to the atmospheric cutoff with R~55,000 and offering long-slit capability over the same band with R~1,000. In addition, a number of UV and optical imagers view adjacent fields to that sampled by the spectrometers. Their performance compares well with that of HST/ACS and the spectral capabilities of WSO rival those of HST/COS.

قيم البحث

اقرأ أيضاً

We summarize the capabilities of the World Space Observatory (UV) Project (WSO/UV). An example of the importance of this project (with a planned launch date of 2007/8) for the study of Classical Novae is given.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7m diameter f eeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102-310nm spectral band is split to feed two echelle spectrographs covering the UV range 174-310nm and the vacuum-UV range 102-176nm with high spectral resolution (R>50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.
The World Space Observatory Project is a new space mission concept, grown out the needs of the Astronomical community to have access to the part of the electromagnetic spectrum where all known physics can be studied on all possible time scales: the U ltraviolet range. The physical diagnostics in this domain supply a richness of new experimental data unmatched by any other wavelength range, for the studies of the Universe. As WSO/UV has been driven by the needs of scientists from many different countries, a new implementation model was needed to bring the World Space Observatory to reality. The WSO/UV consists of a single Ultraviolet Telescope in orbit, incorporating a primary mirror of 1.7 m diameter feeding a UV spectrograph and UV Imagers.
This paper reports on the current status of the World Space Observatory WSO-UV, a space mission for UV astronomy, planned for launch at the beginning of next decade. It is based on a 1.7 m telescope, with focal plane instruments including high resolu tion spectrographs, long slit low resolution spectrographs and imaging cameras.
The growth of luminous structures and the building blocks of life in the Universe began as primordial gas was processed in stars and mixed at galactic scales. The mechanisms responsible for this development are not well understood and have changed ov er the intervening 13 billion years. To follow the evolution of matter over cosmic time, it is necessary to study the strongest (resonance) transitions of the most abundant species in the Universe. Most of them are in the ultraviolet (UV; 950A-3000A) spectral range that is unobservable from the ground. A versatile space observatory with UV sensitivity a factor of 50-100 greater than existing facilities will revolutionize our understanding of the Universe. Habitable planets grow in protostellar discs under ultraviolet irradiation, a by-product of the star-disk interaction that drives the physical and chemical evolution of discs and young planetary systems. The electronic transitions of the most abundant molecules are pumped by the UV field, providing unique diagnostics of the planet-forming environment that cannot be accessed from the ground. Earths atmosphere is in constant interaction with the interplanetary medium and the solar UV radiation field. A 50-100 times improvement in sensitivity would enable the observation of the key atmospheric ingredients of Earth-like exoplanets (carbon, oxygen, ozone), provide crucial input for models of biologically active worlds outside the solar system, and provide the phenomenological baseline to understand the Earth atmosphere in context. In this white paper, we outline the key science that such a facility would make possible and outline the instrumentation to be implemented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا