ﻻ يوجد ملخص باللغة العربية
Abell 2029 is one of the most studied clusters due to its proximity (z=0.07), its strong X-ray brightness and its giant cD galaxy which is one of the biggest stellar aggregates we know. We present here the first weak lensing mass reconstruction of this cluster made from a deep I-band image of 28.5x28.5 centered on the cluster cD galaxy. This preliminary result allows us already to show the shape similarities between the cD galaxy and the cluster itself, suggesting that they form actually a single structure. We find a lower estimate of the total mass of 1.8 10^14 h^-1 solar masses within a radius of 0.3 h^-1 Mpc. We finally compute the mass-to-cD-light ratio and its evolution as a function of scale.
Aims. The Large Binocular Cameras (LBC) are two twin wide field cameras (FOV ~ 23x 25) mounted at the prime foci of the 8.4m Large Binocular Telescope (LBT). We performed a weak lensing analysis of the z=0.288 cluster Abell 611 on g-band data obtaine
Weak lensing applied to deep optical images of clusters of galaxies provides a powerful tool to reconstruct the distribution of the gravitating mass associated to these structures. We use the shear signal extracted by an analysis of deep exposures of
We present two weak lensing reconstructions of the nearby ($z_{cl}=0.055$) merging cluster Abell 3667, based on observations taken $sim 1$ year apart under different seeing conditions. This is the lowest redshift cluster with a weak lensing mass reco
Galaxy clusters might be sources of TeV gamma rays emitted by high-energy protons and electrons accelerated by large scale structure formation shocks, galactic winds, or active galactic nuclei. Furthermore, gamma rays may be produced in dark matter p
We present a new gravitational lens model of the Hubble Frontier Fields cluster Abell 370 ($z = 0.375$) using imaging and spectroscopy from Hubble Space Telescope and ground-based spectroscopy. We combine constraints from a catalog of 1344 weakly len