ترغب بنشر مسار تعليمي؟ اضغط هنا

The optical counterpart of the ultra-luminous x-ray source NGC 5204 X-1

58   0   0.0 ( 0 )
 نشر من قبل Dr Michael R. Goad
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.R. Goad




اسأل ChatGPT حول البحث

We use archival HST/WFPC2 V and I band images to show that the optical counterpart to the ultra-luminous x-ray source NGC 5204 X-1, reported by Roberts et al., is composed of two sources separated by 0.5. We have also identified a third source as a possible counterpart, which lies 0.8 from the nominal x-ray position. PSF fitting photometry yields V-band magnitudes of 20.3, 22.0 and 22.4 for the three sources. The V-I band colours are 0.6, 0.1, and -0.2, respectively (i.e. the fainter sources are bluer). We find that all V-I colours and luminosities are consistent with those expected for young stellar clusters (age <10 Myr).



قيم البحث

اقرأ أيضاً

We present the results of two XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5204 X-1. The EPIC spectra are well-fit by the standard spectral model of a black-hole X-ray binary, comprising a soft multi-colour disc blackbody compo nent plus a harder power-law continuum. The cool (kT_in ~ 0.2 keV) inner-disc temperature required by this model favours the presence of an intermediate-mass black hole (IMBH) in this system, though we highlight a possible anomaly in the slope of the power-law continuum in such fits. We discuss the interpretation of this and other, non-standard spectral modelling of the data.
176 - Hua Feng , Philip Kaaret 2007
We present Chandra and HST observations of the ultraluminous X-ray source (ULX) IC 342 X-1. The Chandra and HST images are aligned using two X-ray emitting foreground stars. The astrometry corrected position for X-1 is R.A. = 03h45m55.61s, Decl. = +6 8d04m55.3s (J2000) with an error circle of 0.2. One extended optical source is found in the error circle, which could be the optical counterpart of X-1. The source shows an extended feature in HST images at long wavelengths, which is likely to be a superposition of two point sources, although it is possible that the dimmer one could be a jet. Both sources are much redder than typical for ULX optical counterparts. The brighter one has an absolute magnitude M_V = -5.2 +/- 0.2 and (B-V)_0 = 0.66 +/- 0.13 and the dimmer star is not detected in B and has (B-V)_0 > 2.1. Their colors are consistent with an F8 to G0 Ib supergiant or a carbon star, respectively. However, it is likely that part or most of the optical emission may be due to X-rays reprocessed by the companion star or the accretion disk. The stellar neighborhood of IC 342 X-1 lacks O stars and has a minimum age of ~10 Myr. This excludes the possibility that the surrounding nebula is powered by an energetic explosion of a single massive star that formed a black hole. We suggest that the nebula is most likely powered by an outflow from the X-ray source.
We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by NuSTAR and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the bro adband coverage to 0.3-20 keV. The observations were carried out in two epochs separated by approximately 10 days, and showed little spectral variation, with an observed luminosity of Lx = (4.95+/-0.11)e39 erg/s. The broadband spectrum confirms the presence of a clear spectral downturn above 10 keV seen in some previous observations. This cutoff is inconsistent with the standard low/hard state seen in Galactic black hole binaries, as would be expected from an intermediate mass black hole accreting at significantly sub-Eddington rates given the observed luminosity. The continuum is apparently dominated by two optically thick thermal-like components, potentially accompanied by a faint high energy tail. The broadband spectrum is likely associated with an accretion disk that differs from a standard Shakura & Sunyaev thin disk.
415 - E. Ripamonti 2010
Recent models of the formation of ultra-luminous X-ray sources (ULXs) predict that they preferentially form in low-metallicity environments. We look at the metallicity of the nebula surrounding NGC 1313 X-2, one of the best-studied ULXs. Simple estim ates, based on the extrapolation of the metallicity gradient within NGC 1313, or on empirical calibrations (relating metallicity to strong oxygen lines) suggest a quite low metal content (Z ~ 0.1 Zsun). But such estimates do not account for the remarkably strong X-ray flux irradiating the nebula. Then, we build photoionization models of the nebula using CLOUDY; using such models, the constraints on the metallicity weaken substantially, as we find 0.15 Zsun <= Z <= 0.5 Zsun.
We report on the results of X-ray observations of 4XMM J111816.0-324910, a transient ultra-luminous X-ray source located in the galaxy NGC 3621. This system is characterised by a transient nature and marked variability with characteristic time-scale of ~3500 s, differently from other ULXs, which in the vast majority show limited intra-observation variability. Such a behaviour is very reminiscent of the so-called heartbeats sometimes observed in the Galactic black hole binary GRS 1915+105, where the variability time-scale is ~10-1000 s. We study the spectral and timing properties of this object and find that overall, once the differences in the variability time-scales are taken into account, they match quite closely those of both GRS 1915+105, and of a number of objects showing heartbeats in their light-curves, including a confirmed neutron star and a super-massive black hole powering an active galactic nucleus. We investigate the nature of the compact object in 4XMM J111816.0-324910 by searching for typical neutron star signatures and by attempting a mass estimate based on different methods and assumptions. Based on the current available data, we are not able to unambiguously determine the nature of the accreting compact object responsible for the observed phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا