ترغب بنشر مسار تعليمي؟ اضغط هنا

IP Pegasi: Investigation of the accretion disk structure. Searching evidences for spiral shocks in the quiescent accretion disk

103   0   0.0 ( 0 )
 نشر من قبل Vitaly V. Neustroev
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of spectral investigations of the cataclysmic variable IP Peg in quiescence. Optical spectra obtained on the 6-m telescope at the Special Astrophysical Observatory (Russia), and on the 3.5-m telescope at the German-Spanish Astronomical Center (Calar Alto, Spain), have been analysed by means of Doppler tomography and Phase Modelling Technique. From this analysis we conclude that the quiescent accretion disk of IP Peg has a complex structure. There are also explicit indications of spiral shocks. The Doppler maps and the variations of the peak separation of the emission lines confirm this interpretation. We have detected that all the emission lines show a rather considerable asymmetry of their wings varying with time. The wing asymmetry shows quasi-periodic modulations with a period much shorter than the orbital one. This indicates the presence of an emission source in the binary rotating asynchronously with the binary system. We also have found that the brightness of the bright spot changes considerably during one orbital period. The spot becomes brightest at an inferior conjunction, whereas it is almost invisible when it is located on the distant half of the accretion disk. Probably, this phenomenon is due to an anisotropic radiation of the bright spot and an eclipse of the bright spot by the outer edge of the accretion disk.

قيم البحث

اقرأ أيضاً

Spiral density waves are known to exist in many astrophysical disks, potentially affecting disk structure and evolution. We conduct a numerical study of the effects produced by a density wave, evolving into a shock, on the characteristics of the unde rlying disk. We measure the deposition of angular momentum in the disk by spiral shocks of different strength and verify the analytical prediction of Rafikov (2016) for the behavior of this quantity, using shock amplitude (which is potentially observable) as the input variable. Good agreement between the theory and numerics is found as we vary shock amplitude (including highly nonlinear shocks), disk aspect ratio, equation of state, radial profiles of the background density and temperature, and pattern speed of the wave. We show that high numerical resolution is required to properly capture shock-driven transport, especially at low wave amplitudes. We also demonstrate that relating local mass accretion rate to shock dissipation in rapidly evolving disks requires accounting for the time-dependent contribution to the angular momentum budget, caused by the time dependence of the radial pressure support. We provide a simple analytical prescription for the behavior of this contribution and demonstrate its excellent agreement with the simulation results. Using these findings we formulate a theoretical framework for studying one-dimensional (in radius) evolution of the shock-mediated accretion disks, which can be applied to a variety of astrophysical systems.
89 - R. Baptista 2005
We report the analysis of time-resolved spectroscopy of IP Pegasi in outburst with eclipse mapping techniques to investigate the location and geometry of the observed spiral structures. We were able to obtain an improved view of the spiral structures with the aid of light curves extracted in velocity bins matching the observed range of velocities of the spiral arms combined with a double default map tailored for reconstruction of asymmetric structures. Two-armed spiral structures are clearly seen in all eclipse maps. The arms are located at different distances from the disc centre. The ``blue arm is farther out in the disc (R= 0.55 +/- 0.05 R_{L1}) than the ``red arm (R= 0.30 +/- 0.05 R_{L1}). There are evidences that the velocity of the emitting gas along the spiral pattern is lower than the Keplerian velocity for the same disc radius. The discrepancy is smaller in the outer arm (measured velocities 10-15 per cent lower than Keplerian) and is more significant in the inner arm (observed velocities up to 40 per cent lower than Keplerian). We measured the opening angle of the spirals from the azimuthal intensity distribution of the eclipse maps to be phi= 25 +/- 3 degrees. A comparison with similar measurements on data at different outburst stages reveals that the opening angle of the spiral arms in IP Peg decreases while the outbursting accretion disc cools and shrinks, in agreement with the expected evolution of a tidally driven spiral wave. The sub-Keplerian velocities along the spiral pattern and the clear correlation between the opening angle of the spirals and the outburst stage favors the interpretation of these asymmetric structures as tidally-induced spiral shocks.
We examine the properties of spiral shocks from a steady, adiabatic, non-axisymmetric accretion disk around a compact star in binary. We first time incorporate all the possible influences from binary through adopting the Roche potential and Coriolis forces in the basic conservation equations. In this paper, we assume the spiral shocks to be point-wise self-similar, and the flow is in vertical hydrostatic equilibrium to simplify the study. We also investigate the mass outflow due to the shock compression and apply it to the accreting white dwarf in binary. We find that our model will be beneficial to overcome the ad hoc assumption of optically thick wind generally used in the studies of the progenitor of supernovae Ia.
We have performed three-dimensional numerical simulations of accretion discs in a close binary system using the Smoothed Particle Hydrodynamics method. Our result show that, contrary to previous claims, 3D discs do exist even when the specific heat r atio of the gas is as large as gamma=1.2. Although the disc is clearly more spread in the z-direction in this case than it is for the quasi-isothermal one, the disc height is compatible with the hydrostatic balance equation. Our numerical simulations with gamma=1.2 also demonstrate that spiral shocks exist in 3D discs. These results therefore confirm previous 2D simulations.
131 - J. Gofford 2014
We present evidence for the rapid variability of the high velocity iron K-shell absorption in the nearby ($z=0.184$) quasar PDS456. From a recent long Suzaku observation in 2013 ($sim1$Ms effective duration) we find that the the equivalent width of i ron K absorption increases by a factor of $sim5$ during the observation, increasing from $<105$eV within the first 100ks of the observation, towards a maximum depth of $sim500$eV near the end. The implied outflow velocity of $sim0.25$c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on time-scales as short as $sim1$ week. We show that this variability can be equally well attributed to either (i) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (ii) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to within $r=200-3500$$rm{r_{g}}$ of the black hole. Even in the most conservative case the kinetic power of the outflow is $gtrsim6%$ of the Eddington luminosity, with a mass outflow rate in excess of $sim40%$ of the Eddington accretion rate. The wind momentum rate is directly equivalent to the Eddington momentum rate which suggests that the flow may have been accelerated by continuum-scattering during an episode of Eddington-limited accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا