ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Properties in Low X-Ray Luminosity Clusters at z=0.25

45   0   0.0 ( 0 )
 نشر من قبل Michael L. Balogh
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michael L. Balogh




اسأل ChatGPT حول البحث

We present the first spectroscopic survey of intrinsically low Lx clusters at z>>0, with HST WFPC2 imaging and ground-based spectroscopy. We study 172 confirmed cluster members in a sample of ten clusters at z=0.23-0.3, with Lx<4.E43 h^{-2} ergs/s. The core of each cluster is imaged with WFPC2 in the F702W filter, and the spectroscopic sample is statistically complete to Mr-19.0+5log(h), within an 11 field. The clusters are dynamically well-separated from the surrounding field and the velocity dispersions range from ~350-850 km/s. Emission line galaxies in these clusters are relatively rare, comprising only 22 +/- 4% of the sample. There is no evidence that these emission-line galaxies are dynamically distinct from the majority of the cluster population, though our sample is too small to rule out the ~30% difference that has been observed in more massive clusters. We find eleven galaxies, comprising 6% of the cluster members, which are disk-dominated but show no sign of emission in their spectrum. Most of these are relatively isolated, spiral galaxies with smooth disks. We find no cluster members with a starburst or post-starburst spectrum. The striking similarity between the spectral and morphological properties of galaxies in these clusters and those of galaxies in more massive systems at similar redshifts implies that the physical processes responsible for truncating star formation in galaxies are not restricted to the rare, rich cluster environment, but are viable in much more common environments. In particular, we conclude that ram pressure stripping or cluster-induced starbursts cannot be solely responsible for the low star formation rates in these systems.

قيم البحث

اقرأ أيضاً

The starlight coming from the intergalactic space in galaxy clusters and groups witnesses the violent tidal interactions that galaxies experience in these dense environments. Such interactions may be (at least partly) responsible for the transformati on of normal star-forming galaxies into passive dwarf ellipticals (dEs). In this contribution we present the first systematic study of the IntraCluster Light (ICL) for a statistically representative sample (Zibetti et al. 2005), which comprises 683 clusters selected between z=0.2 and 0.3 from ~1500 deg^2 in the SDSS. Their ICL is studied by stacking the images in the g-, r-, and i-band after masking out all galaxies and polluting sources. In this way a very uniform background illumination is obtained, that allows us to measure surface brightnesses as faint as 31 mag/arcsec^2 and to trace the ICL out to 700 kpc from the central galaxy. We find that the local fraction of light contributed by intracluster stars rapidly decreases as a function of the clustercentric distance, from ~40% at 100 kpc to ~5% at 500 kpc. By comparing the distribution and colours of the ICL and of the clusters galaxies, we find indication that the main source of ICL are the stars stripped from galaxies that plunge deeply into the cluster potential well along radial orbits. Thus, if dEs are the remnants of these stripped progenitors we should expect similar radial orbital anisotropies and correlations between the dE luminosity function and the amount of ICL in different clusters. The diffuse emission we measure is contaminated by faint unresolved galaxies: this makes our flux estimate depend to some extent on the assumed luminosity function, but, on the other hand, allows us to constrain the number of faint galaxies. Our present results disfavour steep (alpha<-1.35) faint-end powerlaw slopes.
We present measurements of the X-ray observables of the intra-cluster medium (ICM), including luminosity $L_X$, ICM mass $M_{ICM}$, emission-weighted mean temperature $T_X$, and integrated pressure $Y_X$, that are derived from XMM-Newton X-ray observ ations of a Sunyaev-Zeldovich Effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range of $0.20 < z < 1.5$. We constrain the best-fit power law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable to mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters ($M_{500}geq 3 times10^{14}$ $M_odot$) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with $geq 2.5{sigma}$ significance in the case of $L_X$ and $M_{ICM}$. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for $L_X$. There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, however the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.
We present the study of nineteen low X-ray luminosity galaxy clusters (L$_X sim$ 0.5--45 $times$ $10^{43}$ erg s$^{-1}$), selected from the ROSAT Position Sensitive Proportional Counters (PSPC) Pointed Observations (Vikhlinin et al. 1998) and the rev ised version of Mullis et al. (2003) in the redshift range of 0.16 to 0.7. This is the introductory paper of a series presenting the sample selection, photometric and spectroscopic observations and data reduction. Photometric data in different passbands were taken for eight galaxy clusters at Las Campanas Observatory; three clusters at Cerro Tololo Interamerican Observatory; and eight clusters at the Gemini Observatory. Spectroscopic data were collected for only four galaxy clusters using Gemini telescopes. With the photometry, the galaxies were defined based on the star-galaxy separation taking into account photometric parameters. For each galaxy cluster, the catalogues contain the PSF and aperture magnitudes of galaxies within the 90% completeness limit. They are used together with structural parameters to study the galaxy morphology and to estimate photometric redshifts. With the spectroscopy, the derived galaxy velocity dispersion of our clusters ranged from 507 km~s$^{-1}$ for [VMF98]022 to 775 km~s$^{-1}$ for [VMF98]097 with signs of substructure. Cluster membership has been extensively discussed taking into account spectroscopic and photometric redshift estimates. In this sense, members are the galaxies within a projected radius of 0.75 Mpc from the X-ray mission peak and with cluster centric velocities smaller than the cluster velocity dispersion or 6000 km~s$^{-1}$, respectively. These results will be used in forthcoming papers to study, among the main topics, the red cluster sequence, blue cloud and green populations; the galaxy luminosity function and cluster dynamics.
The evolution of the properties of the hot gas that fills the potential well of galaxy clusters is poorly known, since models are unable to give robust predictions and observations lack a sufficient redshift leverage and are affected by selection eff ects. Here, with just two high redshift, z approx 1.8, clusters avoiding selection biases, we obtain a significant extension of the redshift range and we begin to constrain the possible evolution of the X-ray luminosity vs temperature relation. The two clusters, JKC041 at z=2.2 and ISCSJ1438+3414 at z=1.41, are respectively the most distant cluster overall, and the second most distant that can be used for studying scaling relations. Their location in the X-ray luminosity vs temperature plane, with an X-ray luminosity 5 times lower than expected, suggests at the 95 % confidence that the evolution of the intracluster medium has not been self-similar in the last three quarters of the Universe age. Our conclusion is reinforced by data on a third, X-ray selected, high redshift cluster, too faint for its temperature when compared to a sample of similarly selected objects. Our data suggest that non-gravitational effects, such as the baryon physics, influence the evolution of galaxy cluster. Precise knowledge of evolution is central for using galaxy clusters as cosmological probes in planned X-ray surveys such as WFXT or JDEM.
59 - Stefano Zibetti 2005
We analyse the spatial distribution and colour of the intracluster light (ICL) in 683 clusters of galaxies between z=0.2 and 0.3, selected from approx 1500 deg^2 of the SDSS-DR1. Surface photometry in the g, r and i bands is conducted on stacked imag es of the clusters, after rescaling them to the same metric size and masking out resolved sources. We are able to trace the average surface brightness profile of the ICL out to 700 kpc, where it is less than 1/10,000 of the mean surface brightness of the dark night sky. The ICL appears as a clear surface brightness excess with respect to an inner R^1/4 profile which characterises the mean profile of the BCG. The surface brightness (SB) of the ICL ranges from 27.5 mag/arcsec^2 at 100 kpc to roughly 32 at 700 kpc in the observed r-band (26.5 to 31 in the rest-frame g-band). We find that, on average, the ICL contributes only a small fraction of the total optical emission in a cluster (10.9+-5.0% within 500 kpc). The radial distribution of the ICL is more centrally concentrated than that of the cluster galaxies, but the colours of the two components are identical within the statistical uncertainties. In the mean the ICL is aligned with and more flattened than the BCG itself. This alignment is substantially stronger than that of the cluster light as a whole. The SB of the ICL correlates both with BCG luminosity and with cluster richness, while the fraction of the total light in the ICL is almost independent of these quantities. These results support the idea that the ICL is produced by stripping and disruption of galaxies as they pass through the central regions of clusters. Our measurements of the diffuse light also constrain the faint-end slope of the cluster LF. Slopes alpha<-1.35 would imply more light from undetected galaxies than is observed in the diffuse component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا