ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the Warm-Hot IGM at High Redshift: A High Resolution Survey for O VI at z = 2.5

99   0   0.0 ( 0 )
 نشر من قبل Robert Simcoe
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a survey for OVI absorption in the spectra of 5 high redshift quasars (2.2 < z < 2.8). We identify 12 cosmological systems, and 6 systems that are either ejected from the background QSO or affected by its local radiation field. Almost all of the intergalactic OVI is associated with strong Ly-a absorption (N_HI > 10^15.2 cm^-2), as well as absorption from CIV and often lower ionization species. The absorbing regions are conservatively constrained to have L<=200 kpc and rho/rho_bar >= 2.5, with actual values probably closer to L ~ 60 kpc and rho/rho_bar ~ 10-30. They also have two distinct gas phases: one which produces photoionized CIV and SiIV at T ~ 30,000 K, and a second which is seen only in OVI. The OVI temperature is difficult to constrain due to uncertainty in the amount of nonthermal line broadening, but it does appear that this gas is hotter than the CIV/SiIV phase and could support collisional OVI production. The OVI is strongly clustered on velocity scales of dv=100-300 km/s, with weaker signal extending to dv = 750 km/s. The power-law slope of the correlation function resembles that of local galaxy and cluster surveys, with a comoving correlation length of 11h_{65}^-1 Mpc. The average Oxygen abundance of the OVI systems is [O/H]>-1.5, about 10 times higher than the level observed in the general IGM. Two OVI production mechanisms are considered: shock heating of gas falling onto existing structure, and expulsion of material by galactic winds. Simulations of infall models tend to overproduce OVI lines by a factor of ~10, though this may result from numerical limitations. Known galaxy populations such as the Lyman break objects could produce the observed amount of OVI if they drive winds to distances of R ~ 50 kpc.

قيم البحث

اقرأ أيضاً

[Abridged] We present a detailed study of the largest sample of intervening O VI systems in the redshift range 1.9 < z < 3.1 detected in high resolution (R ~ 45,000) spectra of 18 bright QSOs observed with VLT/UVES. Based on Voigt profile and apparen t optical depth analysis we find that (i) the Doppler parameters of the O VI absorption are usually broader than those of C IV (ii) the column density distribution of O VI is steeper than that of C IV (iii) line spread (delta v) of the O VI and C IV are strongly correlated (at 5.3sigma level) with delta v(O VI) being systematically larger than delta v(C IV) and (iv) delta v(O VI) and delta v(C IV) are also correlated (at > 5sigma level) with their respective column densities and with N(H I) (3 and 4.5 sigma respectively). These findings favor the idea that C IV and O VI absorption originate from different phases of a correlated structure and systems with large velocity spread are probably associated with overdense regions. The velocity offset between optical depth weighted redshifts of C IV and O VI absorption is found to be in the range 0 < |Delta v (O VI - CIV)| < 48 km/s with a median value of 8 km/s. We compare the properties of O VI systems in our sample with that of low redshift (z < 0.5) samples from the literature and find that (i) the O VI components at low-z are systematically wider than at high-z with an enhanced non-thermal contribution to their b-parameter, (ii) the slope of the column density distribution functions for high and low-z are consistent, (iii) range in gas temperature estimated from a subsample of well aligned absorbers are similar at both high and low-z, and (iv) Omega_{O VI} = (1.0 pm 0.2) times10^{-7} for N(O VI) > 10^{13.7} cm^{-2}, estimated in our high-z sample, is very similar to low-z estimations.
Recently, we presented the detection of carbon monoxide in the transmission spectrum of extrasolar planet HD209458b, using CRIRES, the Cryogenic high-resolution Infrared Echelle Spectrograph at ESOs Very Large Telescope (VLT). The high spectral resol ution observations (R=100,000) provide a wealth of information on the planets orbit, mass, composition, and even on its atmospheric dynamics. The new observational strategy and data analysis techniques open up a whole world of opportunities. We therefore started an ESO large program using CRIRES to explore these, targeting both transiting and non-transiting planets in carbon monoxide, water vapour, and methane. Observations of the latter molecule will also serve as a test-bed for METIS, the proposed mid-infrared imager and spectrograph for the European Extremely Large Telescope.
100 - Todd M. Tripp 2008
Using high-resolution UV spectra of 16 low-z QSOs, we study the physical conditions and statistics of O VI absorption in the IGM at z < 0.5. We identify 51 intervening (z_{abs} << z_{QSO}) O VI systems comprised of 77 individual components, and we fi nd 14 proximate systems (z_{abs} ~ z_{QSO}) containing 34 components. For intervening systems [components] with rest-frame equivalent width W_{r} > 30 mA, the number of O VI absorbers per unit redshift dN/dz = 15.6(+2.9/-2.4) [21.0(+3.2/-2.8)], and this decreases to dN/dz = 0.9(+1.0/-0.5) [0.3(+0.7/-0.3)] for W_{r} > 300 mA. The number per redshift increases steeply as z_{abs} approaches z_{QSO}, and some proximate absorbers have substantially lower H I/O VI ratios. The lower proximate ratios could be partially due to ionization effects but also require higher metallicities. We find that 37% of the intervening O VI absorbers have velocity centroids that are well-aligned with corresponding H I absorption. If the O VI and the H I trace the same gas, the relatively small differences in line widths imply the absorbers are cool with T < 10^{5} K. Most of these well-aligned absorbers have the characteristics of metal-enriched photoionized gas. However, the O VI in the apparently simple and cold systems could be associated with a hot phase with T ~ 10^{5.5} K if the metallicity is high enough to cause the associated broad Ly alpha absorption to be too weak to detect. We show that 53% of the intervening O VI systems are complex multiphase absorbers that can accommodate both lower metallicity collisionally-ionized gas with T > 10^{5} K and cold photoionzed gas.
The Sunyaev-Zeldovich (SZ) effect was first predicted nearly five decades ago, but has only recently become a mature tool for performing high resolution studies of the warm and hot ionized gas in and between galaxies, groups, and clusters. Galaxy gro ups and clusters are powerful probes of cosmology, and they also serve as hosts for roughly half of the galaxies in the Universe. In this white paper, we outline the advances in our understanding of thermodynamic and kinematic properties of the warm-hot universe that can come in the next decade through spatially and spectrally resolved measurements of the SZ effects. Many of these advances will be enabled through new/upcoming millimeter/submillimeter (mm/submm) instrumentation on existing facilities, but truly transformative advances will require construction of new facilities with larger fields of view and broad spectral coverage of the mm/submm bands.
109 - Kristen Menou 2019
Global Circulation Models (GCMs) of atmospheric flows are now routinely used to interpret observational data on Hot Jupiters. Localized equatorial $beta$-plane simulations by Fromang et al. (2016) have revealed that a barotropic (horizontal shear) in stability of the equatorial jet appears at horizontal resolutions beyond those typically achieved in global models; this instability could limit wind speeds and lead to increased atmospheric variability. To address this possibility, we adapt the computationally efficient, pseudo-spectral PlaSim GCM, originally designed for Earth studies, to model Hot Jupiter atmospheric flows and validate it on the Heng et al. (2011) reference benchmark. We then present high resolution global models of HD209458b, with horizontal resolutions of T85 (128x256) and T127 (192x384). The barotropic instability phenomenology found in $beta$-plane simulations is not reproduced in these global models, despite comparably high resolutions. Nevertheless, high resolution models do exhibit additional flow variability on long timescales (of order 100 planet days or more), which is absent from the lower resolution models. It manifests as a breakdown of north-south symmetry of the equatorial wind. From post-processing the atmospheric flows at various resolutions (assuming a cloud-free situation), we show that the stronger flow variability achieved at high resolution does not translate into noticeably stronger dayside infrared flux variability. More generally, our results suggest that high horizontal resolutions are not required to capture the key features of hot Jupiter atmospheric flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا