ﻻ يوجد ملخص باللغة العربية
We present in this paper the numerical treatment of the coupling between hydrodynamics and radiative transfer. The fluid is modeled by classical conservation laws (mass, momentum and energy) and the radiation by the grey moment $M_1$ system. The scheme introduced is able to compute accurate numerical solution over a broad class of regimes from the transport to the diffusive limits. We propose an asymptotic preserving modification of the HLLE scheme in order to treat correctly the diffusion limit. Several numerical results are presented, which show that this approach is robust and have the correct behavior in both the diffusive and free-streaming limits. In the last numerical example we test this approach on a complex physical case by considering the collapse of a gas cloud leading to a proto-stellar structure which, among other features, exhibits very steep opacity gradients.
The paper proposes a second-order accurate direct Eulerian generalized Riemann problem (GRP) scheme for the radiation hydrodynamical equations (RHE) in the zero diffusion limit. The difficulty comes from no explicit expression of the flux in terms of
We analyze the evolution of hydrodynamic fluctuations for QCD matter below $T_c$ in the chiral limit, where the pions (the Goldstone modes) must be treated as additional non-abelian superfluid degrees of freedom, reflecting the broken $SU_L(2) times
The radiation magnetohydrodynamics (RMHD) system couples the ideal magnetohydrodynamics equations with a gray radiation transfer equation. The main challenge is that the radiation travels at the speed of light while the magnetohydrodynamics changes w
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit, with
Radiation controls the dynamics and energetics of many astrophysical environments. To capture the coupling between the radiation and matter, however, is often a physically complex and computationally expensive endeavour. We develop a numerical tool t