ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra Evidence for a Flattened, Triaxial Dark Matter Halo in the Elliptical Galaxy NGC 720

79   0   0.0 ( 0 )
 نشر من قبل David Buote
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David A. Buote




اسأل ChatGPT حول البحث

(Abridged) We present an analysis of a Chandra ACIS-S observation of the elliptical galaxy NGC 720 to verify the existence of a dark matter (DM) halo and to measure its ellipticity. The ACIS-S3 image reveals over 60 point sources. For semi-major axes a<~150 (18.2h_{70}^{-1} kpc) the ellipticity of the diffuse emission is ex ~0.15, which is less than the values 0.2-0.3 obtained from ROSAT because the point sources contaminated the ROSAT values. The Chandra data confirm the ~20 deg position angle (PA) twist discovered by ROSAT, but the Chandra twist is more gradual also because of the point sources contaminating the ROSAT values. Overall the ex and PA values for a<~150 can be explained by the triaxial model of NGC 720 published by Romanowsky & Kochanek. Since the optical image displays no substantial isophote twisting, the X-ray PA twist requires a massive DM halo if the hot gas is in hydrostatic equilibrium. The mass-follows-light hypothesis is also inconsistent with the Chandra ellipticities at the 96% (98%) level for oblate (prolate) symmetry. Thus, both the PA twist and the ellipticities of the Chandra image imply a DM halo independent of the gas T profile -- evidence that cannot be obviated by alternative gravity theories such as MOND. The DM density model, rho ~a^{-2}, provides the best fit and gives ellipticities of 0.37 +/- 0.03 (0.36 +/- 0.02) for oblate (prolate) models. These moderate ellipticities for the DM halo are inconsistent with both the nearly spherical halos predicted if the DM is self-interacting and with the highly flattened halos predicted if the DM is cold molecular gas. These ellipticities may also be too large to be explained by warm DM, but are consistent with galaxy-sized halos formed in the Lambda-CDM paradigm.

قيم البحث

اقرأ أيضاً

310 - H. Arp 2005
The galaxy cluster RXJ 0152.7-1357 is emitting X-rays at the high rate of 148 counts $ks^{-1}$. It would be one of the most luminous X-ray clusters known if it is at its redshift distance of z = .8325. It is conspicuously elongated, however, toward t he bright, X-ray active galaxy NGC 720 about 14 arcmin away. At the same distance on the other side of NGC 720, and almost perfectly aligned, is an X-ray BSO of 5.8 cts/ks. It is reported here that the redshift of this quasar is z = .8312.
We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 PNe out to 7 effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megac am, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1 Re. The velocity dispersion profile declines with radius, though not very steeply, down to ~70 km/s at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component LCDM-motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fit solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio, and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration halos, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.
Spectroscopic observations at the Russian 6-m telescope are used to study the two polar ring galaxies (PRGs) from the catalogue by Moiseev et al.: SPRC-7 and SPRC-260. We have analyzed the kinematics of the stellar component of the central galaxies a s well as the ionized gas kinematics in the external ring structures. The disc-halo decomposition of rotation curves in two perpendicular directions are considered. The observed 2D velocity fields are compared with the model predictions for different dark halo shapes. Based on these data, we constrain that for potential of DM halo semiaxis ratios is $s=0.8$, $q=1$ for SPRC-7 and $s=0.95$, $q=1.1$ for SPRC-260. Using 3D hydrodynamic simulations we also study the dynamics and evolution of the polar component in the potential of the galactic disc and dark halo for these two galaxies. We show that the polar component is dynamically quasi-stable on the scale of $sim10$ dynamical times (about a few Gyr). This is demonstrate the possibility for the growth of a spiral structure, which then steadily transforms to a lopsided gaseous system in the polar pane.
We determine the total enclosed mass profile from 0.7 to 35 kpc in the elliptical galaxy NGC 4636 based on the hot interstellar medium temperature profile measured using the Chandra X-ray Observatory, and other X-ray and optical data. The total mass increases as radius to the power 1.2 to a good approximation over this range in radii, attaining a total of 1.5 trillion solar masses (corresponding to a mass-to-light ratio of 40 solar masses per solar visual luminosity) at 35 kpc. We find that at least half, and as much as 80%, of the mass within the optical half-light radius is non-luminous, implying that NGC 4636 has an exceptionally low baryon fraction. The large inferred dark matter concentration and central dark matter density, consistent with the upper end of the range expected for standard cold dark matter halos, imply that mechanisms proposed to explain low dark matter densities in less massive galaxies (e.g., self-interacting dark matter, warm dark matter, explosive feedback) are not effective in elliptical galaxies (and presumably, by extension, in galaxy clusters). The composite (black hole, stars, and dark matter) mass distribution has a generally steep slope with no core, consistent with gravitational lensing studies.
As part of our current programme to test LCDM predictions for dark matter (DM) haloes using extended kinematical observations of early-type galaxies, we present a dynamical analysis of the bright elliptical galaxy NGC 4374 (M84) based on ~450 Planeta ry Nebulae (PNe) velocities from the PN.Spectrograph, along with extended long-slit stellar kinematics. This is the first such analysis of a galaxy from our survey with a radially constant velocity dispersion profile. We find that the spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The velocity kurtosis is consistent with zero at almost all radii. We construct a series of Jeans models, fitting both velocity dispersion and kurtosis to help break the mass-anisotropy degeneracy. Our mass models include DM halos either with shallow cores or with central cusps as predicted by cosmological simulations - along with the novel introduction in this context of adiabatic halo contraction from baryon infall. Both classes of models confirm a very massive dark halo around NGC 4374, demonstrating that PN kinematics data are well able to detect such haloes when present. Considering the default cosmological mass model, we confirm earlier suggestions that bright galaxies tend to have halo concentrations higher than LCDM predictions, but this is found to be solved if either a Salpeter IMF or adiabatic contraction with a Kroupa IMF is assumed. Thus for the first time a case is found where the PN dynamics may well be consistent with a standard dark matter halo. A cored halo can also fit the data, and prefers a stellar mass consistent with a Salpeter IMF. The less dramatic dark matter content found in lower-luminosity ordinary ellipticals suggests a bimodality in the halo properties which may be produced by divergent baryonic effects during their assembly histories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا