ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of the X-ray transient SAX J1711.6-3808

399   0   0.0 ( 0 )
 نشر من قبل Jean in 't Zand
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SAX J1711.6-3808 is an X-ray transient in the Galactic bulge that was active from January through May of 2001 and whose maximum 1-200 keV luminosity was measured to be 5X10-9 erg/s/cm2 which is less than ~25% of the Eddington limit, if placed at a distance equal to that of the galactic center. We study the X-ray data that were taken of this moderately bright transient with instruments on BeppoSAX and RXTE. The spectrum shows two interesting features on top of a Comptonized continuum commonly observed in low-state X-ray binaries: a broad emission feature peaking at 7 keV and extending from 4 to 9 keV, and a soft excess with a color temperature below 1 keV which reveals itself only during one week of data. High time-resolution analysis of 412 ksec worth of data fails to show bursts, coherent or high-frequency quasi-periodic oscillations. Given the dynamic range of the flux measurements, this would be unusual if a neutron star were present. SAX J1711.6-3808 appears likely to contain a black hole. No quiescent optical counterpart could be identified in archival data within the 5-radius XMM error circle, but the limits are not very constraining because of heavy extinction (Av=16).



قيم البحث

اقرأ أيضاً

218 - S. Mereghetti 2008
We present recent observations of the X-ray pulsar SAX J1324-6200 obtained in December 2007 with the Swift satellite yielding a significant improvement in the source localization with respect to previous data and a new measurement of the spin period P=172.84s. A single object consistent in colors with a highly reddened early type star is visible in the X-ray error box. The period is significantly longer than that obtained in 1997, indicating that SAX J1324-6200 has been spinning down at an average rate of ~6x10^-9 s s^-1. We discuss the possible nature of the source showing that it most likely belongs to the class of low luminosity, persistent Be/neutron star binaries.
70 - E. V. Filippova 2004
We investigated the optical, X-ray, and gamma-ray variability of the pulsar SAX J2103.5+4545. Our timing and spectral analyses of the X-ray and gamma-ray emissions from the source using RXTE and INTEGRAL data show that the shape of its spectrum in th e energy range 3 -- 100 keV is virtually independent of its intensity and the orbital phase. Based on XMM-Newton data, we accurately (5 arcsec) localized the object and determined the optical counterpart in the binary. We placed upper limits on the variability of the latter in the R band and the H-alpha line on time scales of the orbital and pulse periods, respectively.
61 - N. Werner 2003
SAX J1747.0-2853 is an X-ray transient which exhibited X-ray outbursts yearly between 1998 and 2001, and most probably also in 1976. The outburst of 2000 was the longest and brightest. We have analyzed X-ray data sets that focus on the 2000 outburst and were obtained with BeppoSAX, XMM-Newton and RXTE. The data cover unabsorbed 2--10 keV fluxes between 0.1 and 5.3 X 10^-9 erg/s/cm^2. The equivalent luminosity range is 6 X 10^35 to 2 X 10^37 erg/s. The 0.3--10 keV spectrum is well described by a combination of a multi-temperature disk blackbody, a hot Comptonization component and a narrow Fe-K emission line at 6.5 to 6.8 keV with an equivalent width of up to 285 eV. The hydrogen column density in the line of sight is (8.8+/-0.5) X 10^22 cm^-2. The most conspicuous spectral changes in this model are represented by variations of the temperature and radius of the inner edge of the accretion disk, and a jump of the equivalent width of the Fe-K line in one observation. Furthermore, 45 type-I X-ray bursts were unambiguously detected between 1998 and 2001 which all occurred during or close to outbursts. We derive a distance of 7.5+/-1.3 kpc which is consistent with previous determinations. Our failure to detect bursts for prolonged periods outside outbursts provides indirect evidence that the source returns to quiescence between outbursts and is a true transient.
Phase-resolved spectroscopy of the newly discovered X-ray transient MAXI J0556-332 has revealed the presence of narrow emission lines in the Bowen region that most likely arise on the surface of the mass donor star in this low mass X-ray binary. A pe riod search of the radial velocities of these lines provides two candidate orbital periods (16.43+/-0.12 and 9.754+/-0.048 hrs), which differ from any potential X-ray periods reported. Assuming that MAXI J0556-332 is a relatively high inclination system that harbors a precessing accretion disk in order to explain its X-ray properties, it is only possible to obtain a consistent set of system parameters for the longer period. These assumptions imply a mass ratio of q~0.45, a radial velocity semi-amplitude of the secondary of K_2~190 km/s and a compact object mass of the order of the canonical neutron star mass, making a black hole nature for MAXI J0556-332 unlikely. We also report the presence of strong N III emission lines in the spectrum, thereby inferring a high N/O abundance. Finally we note that the strength of all emission lines shows a continuing decay over the ~1 month of our observations.
We have discovered with the Wide Field Cameras on board BeppoSAX the weak transient X-ray source SAXJ2239.3+6116 whose position coincides with that of 4U2238+60/3A2237+608 and is close to that of the fast transient AT2238+60 and the unidentified EGRE T source 3EG2227+6122. The data suggest that the source exhibits outbursts that last for a few weeks and peak to a flux of 4E-10 erg/s/cm2 (2-10 keV) at maximum. During the peak the X-ray spectrum is hard with a photon index of -1.1+/-0.1. Follow-up observations with the Narrow-Field Instruments on the same platform revealed a quiescent emission level that is 1E+3 times less. Searches through the data archive of the All-Sky Monitor on RXTE result in the recognition of five outbursts in total from this source during 1996-1999, with a regular interval time of 262 days. Optical observations with the KPNO 2.1 m telescope provide a likely optical counterpart. It is a B0 V to B2 III star with broadened emission lines at an approximate distance of 4.4 kpc. The distance implies a 2-10 keV luminosity in the range from 1E+33 to 1E+36 erg/s. The evidence suggests that SAXJ2239.3+6116 is a Be X-ray binary with an orbital period of 262 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا