ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposed Next Generation GRB Mission: EXIST

52   0   0.0 ( 0 )
 نشر من قبل Jonathan E. Grindlay
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Grindlay




اسأل ChatGPT حول البحث

A next generation Gamma Ray Burst (GRB) mission to follow the upcoming Swift mission is described. The proposed Energetic X-ray Imaging Survey Telescope, EXIST, would yield the limiting (practical) GRB trigger sensitivity, broad-band spectral and temporal response, and spatial resolution over a wide field. It would provide high resolution spectra and locations for GRBs detected at GeV energies with GLAST. Together with the next generation missions Constellation-X, NGST and LISA and optical-survey (LSST) telescopes, EXIST would enable GRBs to be used as probes of the early universe and the first generation of stars. EXIST alone would give ~10-50 positions (long or short GRBs), approximate redshifts from lags, and constrain physics of jets, orphan afterglows, neutrinos and SGRs.

قيم البحث

اقرأ أيضاً

The NeXT (New exploration X-ray Telescope), the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission which is currently planed for launch in 2013. NeXT is a combination of wide band X-ray spectroscopy (3 - 80 keV ) provided by multi-layer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector. With these instruments, NeXT covers very wide energy range from 0.3 keV to 600 keV. The micro-calorimeter system will be developed by international collaboration lead by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E ~ 7 eV by the micro-calorimeter will enable a wide variety of important science themes to be pursued.
The Energetic X-ray Imaging Survey Telescope (EXIST) is designed to i) use the birth of stellar mass black holes, as revealed by cosmic Gamma-Ray Bursts (GRBs), as probes of the very first stars and galaxies to exist in the Universe. Both their extre me luminosity (~104 times larger than the most luminous quasars) and their hard X-ray detectability over the full sky with wide-field imaging make them ideal back-lights to measure cosmic structure with X-ray, optical and near-IR (nIR) spectra over many sight lines to high redshift. The full-sky imaging detection and rapid followup narrow-field imaging and spectroscopy allow two additional primary science objectives: ii) novel surveys of supermassive black holes (SMBHs) accreting as very luminous but rare quasars, which can trace the birth and growth of the first SMBHs as well as quiescent SMBHs (non-accreting) which reveal their presence by X-ray flares from the tidal disruption of passing field stars; and iii) a multiwavelength Time Domain Astrophysics (TDA) survey to measure the temporal variability and physics of a wide range of objects, from birth to death of stars and from the thermal to non-thermal Universe. These science objectives are achieved with the telescopes and mission as proposed for EXIST described here.
58 - J.E. Grindlay 2002
The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed very large area coded aperture telescope array, incorporating 8m^2 of pixellated Cd-Zn-Te (CZT) detectors, to conduct a full-sky imaging and temporal hard x-ray (10-600 keV) survey ea ch 95min orbit. With a sensitivity (5sigma, 1yr) of ~0.05mCrab (10-150 keV), it will extend the ROSAT soft x-ray (0.5-2.5keV) and proposed ROSITA medium x-ray (2-10 keV) surveys into the hard x-ray band and enable identification and study of sources ~10-20X fainter than with the ~15-100keV survey planned for the upcoming Swift mission. At ~100-600 keV, the ~1mCrab sensitivity is 300X that achieved in the only previous (HEAO-A4, non-imaging) all-sky survey. EXIST will address a broad range of key science objectives: from obscured AGN and surveys for black holes on all scales, which constrain the accretion history of the universe, to the highest sensitivity and resolution studies of gamma-ray bursts it will conduct as the Next Generation Gamma-Ray Burst mission. We summarize the science objectives and mission drivers, and the results of a mission design study for implementation as a free flyer mission, with Delta IV launch. Key issues affecting the telescope and detector design are discussed, and a summary of some of the current design concepts being studied in support of EXIST is presented for the wide-field but high resolution coded aperture imaging and very large area array of imaging CZT detectors. Overall mission design is summarized, and technology development needs and a development program are outlined which would enable the launch of EXIST by the end of the decade, as recommended by the NAS/NRC Decadal Survey.
With the Swift detection of GRB090423 at z = 8.2, it was confirmed that GRBs are now detectable at (significantly) larger redshifts than AGN, and so can indeed be used as probes of the Early Universe. The proposed Energetic X-ray Imaging Survey Teles cope (EXIST) mission has been designed to detect and promptly measure redshifts and both soft X-ray (0.1 - 10 keV) and simultaneous nUV-nIR (0.3 - 2.3microns) imaging and spectra for GRBs out to redshifts z ~18, which encompasses (or even exceeds) current estimates for Pop III stars that are expected to be massive and possibly GRB sources. Scaling from Swift for the ~10X greater sensitivity of EXIST, more than 100 GRBs at z >=8 may be detected and would provide direct constraints on the formation and evolution of the first stars and galaxies. For GRBs at redshifts z >= 8, with Lyman breaks at greater than 1.12microns, spectra at resolution R = 30 or R = 3000 for afterglows with AB magnitudes brighter than 24 or 20 (respectively) within ~3000sec of trigger will directly probe the Epoch of Reionization, formation of galaxies, and cosmic star formation rate. The proposed EXIST mission can probe these questions, and many others, given its unparalleled combination of sensitivity and spatial-spectral-temporal coverage and resolution. Here we provide an overview of the key science objectives for GRBs as probes of the early Universe and of extreme physics, and the mission plan and technical readiness to bring this to EXIST.
The Energetic X-ray Imaging Survey Telescope (EXIST) mission concept is optimized for study of high-z GRBs as probes of the early Universe. With a High Energy Telescope (HET) incorporating a 4.5m^2 5-600keV (CZT; 0.6mm pixels) detector plane for code d aperture imaging a 90deg x 70deg (>10% coding fraction) field of view with 2 resolution and <20 (90% conf.) positions for >5 sigma sources, EXIST will perform rapid (<200sec) slews onto GRBs. Prompt images and spectra are obtained with a co-aligned soft X-ray telescope (SXI; 0.1 - 10keV) and with a 1.1m optical-IR telescope (IRT) simultaneously in 4 bands (0.3 - 0.52micron, 0.52 - 0.9micron, 0.9 - 1.38micron, and 1.38 - 2.3micron). An initial image (100s) will yield prompt identification within the HET error circle from a <2 prompt SXI position; or from VIS vs. IR dropouts or variability. An autonomous spacecraft re-point (<30) will then put the GRB on a 0.3 x 4 slit for either R = 3000 (for AB <21) or R =30 (for AB ~21-25) prompt spectra over the 0.3 - 0.9 micron and 0.9 - 2.3 micron bands. This will provide onboard redshifts within ~500-2000sec for most GRBs, reaching z ~20 (for Lyman-alpha breaks) if such GRBs exist, and spectra for studies of the host galaxy and local re-ionization patchiness as well as intervening cosmic structure. With ~600 GRBs/yr expected, including ~7-10% expected at z >7, EXIST will open a new era in studies of the early Universe as well as carry out a rich program of AGN and transient-source science. An overview of the GRB science objectives and a brief discussion of the overall mission design and operations is given, and example high-z GRB IRT spectra are shown. EXIST is being proposed to the Astro2010 Decadal Survey as a 5 year Medium Class mission that could be launched as early as 2017.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا