ﻻ يوجد ملخص باللغة العربية
gamma Cas (B0.5e) is known to be a unique X-ray source because ot its moderate L_x, hard X-ray spectrum, and light curve punctuated by ubiquitous flares and slow undulations. Its X-ray peculiarities have led to a controversy concerning their origin: either from wind infall onto a putative degenerate companion, as for typical Be/X-ray binaries, or from the Be star per se. Recent progress has been made to address this: (1) the discovery that gamma Cas is an eccentric binary system (P = 203.59 d) with unknown secondary type, (2) the accumulation of RXTE data at 9 epochs in 1996-2000, and (3) the collation of robotic telescope B, V-band photometric observations over 4 seasons. The latter show a 3%, cyclical flux variation with cycle lengths 55-93 days. We find that X-ray fluxes at all 9 epochs show random variations with orbital phase. This contradicts the binary accretion model, which predicts a substantial modulation. However,these fluxes correlate well with the cyclical optical variations. Also, the 6 flux measurements in 2000 closely track the interpolated optical variations between the 2000 and 2001 observing seasons. Since the optical variations represent a far greater energy than that emitted as X-rays, the optical variability cannot arise from X-ray reprocessing. However, the strong correlation between the two suggests that they are driven by a common mechanism. We propose that this mechanism is a cyclical magnetic dynamo excited by a Balbus-Hawley instability located within the inner part of the circumstellar disk. In our model, variations in the field strength directly produce the changes in the magnetically related X-ray activity. Turbulence associated with the dynamo results in changes to the density distribution within the disk and creates the observed optical variations.
A growing number of Be and Oe stars, named the gamma Cas stars, are known for their unusually hard and intense X-ray emission. This emission could either trace accretion by a compact companion or magnetic interaction between the star and its decretio
Gamma Cas and its dozen analogs comprise a small but distinct class of X-ray sources. They are early Be-type stars with an exceptionally hard thermal X-ray emission. The X-ray production mechanism has been under intense debate. Two competing ideas ar
We report optical spectroscopic observations of the Be/gamma-ray binaries LSI+61303, MWC 148 and MWC 656. The peak separation and equivalent widths of prominent emission lines (H-alpha, H-beta, H-gamma, HeI, and FeII) are measured. We estimated the c
We investigate the short-term optical variability of two gamma Cas analogs, pi Aqr and BZ Cru, thanks to intensive ground-based spectroscopic and space-borne photometric monitorings. For both stars, low-amplitude (mmag) coherent photometric variabili
$gamma$ Cas stars are a $sim$1% minority among classical Be stars with hard but only moderately strong continuous thermal X-ray flux and mostly very early-B spectral type. The X-ray flux has been suggested to originate from matter accelerated via mag