ﻻ يوجد ملخص باللغة العربية
We confirm the detection of the relativistically broadened iron K-alpha emission at 6.4 keV with simultaneous Chandra HETGS and RXTE PCA observations. Heavily binned HETGS data show a disk line profile with parameters very similar to those previously seen by ASCA. We observe a resolved narrow component with a velocity width ~4700 km/s (FWHM ~ 11,000 km/s), that is most prominent, and narrower (FWHM ~ 3600 km/s) when the continuum flux is high. It plausibly is just the blue wing of the broad line. We obtain a stringent limit on the equivalent width of an intrinsically narrow line in the source of 16 eV, indicating little or no contribution due to fluoresence from distant material such as the molecular torus. Variability studies of the narrow component show a constant iron line flux and variable width indicating the line may be originating from different kinematic regions of the disk.
We present a high resolution X-ray spectrum of the iron K bandpass in MCG-6-30-15 based on a 522 ksec observation with Chandras High Energy Transmission Grating Spectrometer. The Chandra spectrum is consistent with the presence of a relativistically
We report on the variability of the iron K emission line in the Seyfert 1 galaxy MCG--6-30-15 during a four-day ASCA observation. The line consists of a narrow core at an energy of about 6.4 keV, and a broad red wing extending to below 5 keV, which a
The Chandra AO1 HETGS observation of the micro-quasar GRS 1915+105 in the low hard state reveals (1) neutral K absorption edges from Fe, Si, Mg, and S in cold gas, and (2) highly ionized (Fe XXV and Fe XXVI) absorption attributed to a hot disk, disk
We present detailed evidence for a warm absorber in the Seyfert 1 galaxy MCG--6-30-15 and dispute earlier claims for relativistic O line emission. The HETG spectra show numerous narrow, unresolved (FWHM < 200 km/s) absorption lines from a wide range
The broad iron K$alpha$ emission line, commonly seen in the X-ray spectrum of Seyfert nuclei, is thought to originate when the inner accretion disk is illuminated by an active disk-corona. We show that relative motion between the disk and the X-ray e