ترغب بنشر مسار تعليمي؟ اضغط هنا

The UCSD HIRES/KeckI Damped Lya Abundance Database III. An Empirical Study of Photoionization in the Damped Lya System Toward GB1759+7539

59   0   0.0 ( 0 )
 نشر من قبل Jason X. Prochaska
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the ionization state of the damped Lya system at z=2.62 toward GB1759+7539 through an analysis of ionic ratios sensitive to photoionization: ArI/SII, FeIII/FeII, NII/NI, AlIII/AlII. Approximately half of the metals arise in a mostly neutral velocity component with HI/H > 0.9, based on FeIII/FeII < 0.013. In contrast, the remaining half exhibits FeIII/FeII~0.3 indicative of a partially ionized medium with HI/H~0.5. These conclusions are supported by the observed NII/NI, AlIII/AlII, and ArI/SII ratios. We assess ionization corrections for the observed column densities through photoionization models derived from the CLOUDY software package. In the neutral gas, the ionization corrections are negligible except for ArI. However for the partially ionized gas, element abundance ratios differ from the ionic ratios by 0.1-0.3 dex for (SiII, SII, NiII, AlII)/FeII ratios and more for (NI, ArI)/FeII. Independent of the shape of the photoionizing spectrum and assumptions on the number of ionization phases, these ionization corrections have minimal impact (<0.1dex) on the total metallicity inferred for this damped Lya system. Measurements on the relative elemental abundances of the partially ionized gas, however, have a greater than ~0.15 dex uncertainty which hides the effects of nucleosynthesis and dust depletion. We caution the reader that this damped system is unusual for a number of reasons (e.g. a very low ArI/SII ratio) and we believe its ionization properties are special but not unique. Nevertheless, it clearly shows the value of examining photoionization diagnostics like FeIII/FeII in a larger sample of systems.



قيم البحث

اقرأ أيضاً

We present 14 N^0 measurements from our HIRES/Keck database of damped Lya abundances. These data are combined with measurements from the recent and past literature to build an homogeneous, uniform set of observations. We examine photoionization diagn ostics like Fe^++ and Ar^0 in the majority of the complete sample and assess the impact of ionization corrections on N/alpha and alpha/H values derived from observed ionic column densities of N^0, Si^+, H^0, and S^+. Our final sample of 19 N/alpha, alpha/H pairs appears bimodal; the majority of systems show N/alpha values consistent with metal-poor emission regions in the local universe but a small sub-sample exhibit significantly lower N/alpha ratios. Contrary to previous studies of N/alpha in the damped systems, our sample shows little scatter within each sub-sample. We consider various scenarios to explain the presence of the low N/alpha sightlines and account for the apparent bimodality. We favor a model where at least some galaxies undergo an initial burst of star formation with suppressed formation of intermediate-mass stars. We found a power-law IMF with slope 0.10 or a mass cut of ~5-8 Msolar would successfully reproduce the observed LN-DLA values. If the bimodal distribution is confirmed by a larger sample of measurements, this may present the first observational evidence for a top heavy initial mass function in some early stellar populations.
We publish the Keck/HIRES and Keck/ESI spectra that we have obtained during the first 10 years of Keck observatory operations. Our full sample includes 42 HIRES spectra and 39 ESI spectra along 65 unique sightlines providing abundance measurements on ~85 damped Lya systems. The normalized data can be downloaded from the journal or from our supporting website: http://www.ucolick.org/~xavier/DLA/. The database includes all of the sightlines that have been included in our papers on the chemical abundances, kinematics, and metallicities of the damped Lya systems. This data has also been used to argue for variations in the fine-structure constant. We present new chemical abundance measurements for 10 damped Lya systems and a summary table of high-resolution metallicity measurements (including values from the literature) for 153 damped Lya systems at z>1.6. We caution, however, that this metallicity sample (and all previous ones) is biased to higher N(HI) values than a random sample.
We are engaged in a programme of imaging with the STIS and NICMOS (NIC2) instruments aboard the Hubble Space Telescope (HST), to search for the galaxy counterparts of 18 high-redshift z>1.75 damped Lya absorption lines and 5 Lyman-limit systems seen in the spectra of 16 target quasars. This paper presents the results of the imaging campaign with the NIC2 camera. We describe the steps followed in reducing the data and combining in mosaics, and the methods used for subtracting the image of the quasar in each field, and for constructing error frames that include the systematic errors associated with the psf subtraction. To identify candidate counterparts, that are either compact or diffuse, we convolved the image and variance frames with circular top-hat filters of diameter 0.45 and 0.90 arcsec respectively, to create frames of summed S/N within the aperture. For each target quasar we provide catalogues listing positions and aperture magnitudes of all sources within a square of side 7.5 arcsec centred on the quasar, detected at S/N>6. We find a total of 41 candidates of which three have already been confirmed spectroscopically as the counterparts. We provide the aperture magnitude detection limits as a function of impact parameter, for both detection filters, for each field. The average detection limit for compact (diffuse) sources is H(AB)=25.0 (24.4) at an angular separation of 0.56 arcsec (0.79 arcsec) from the quasar, improving to H(AB)=25.5 (24.8) at large angular separations. For the brighter sources we have measured the half-light radius and the n parameter of the best-fit deconvolved Sersic-law surface-brightness profile, and the ellipticity and orientation.
64 - Arthur M. Wolfe 2004
We investigate the heat source of the neutral gas comprising DLAs. Unlike the Lya forest, where the extragalactic background radiation field ionizes and heats the gas, we find that grain photoelectric heating by the FUV background is not sufficient t o balance the C II 158um cooling rate inferred from DLAs. In these systems, a local energy source is required. We show that in the case of the z=1.919 DLA toward Q2206-19, the local source is FUV emission from the associated galaxy found by Moller et al (2002): the mean intensity inferred from photometry is in good agreement with the intensity Jnu required to explain the cooling rate. The FUV mean intensity predicted for a cold neutral medium (CNM) model, Jnu=(1.7+2.7-1.0)x10^(-18) cgs (95% c.l.), is the largest expected from our CII* study of 45 DLAs. This may explain why this is the only confirmed DLA yet detected in emission at z>1.9. We argue that in most DLAs with detected CII* absorption, Jnu is between 10^{-19} and 10^{-18} and heats the gas which is a CNM. By contrast, in most DLAs with upper limits on CII* absorption the gas is a warm neutral medium (WNM). Surprisingly, the upper limits are compatible with the same range of Jnu values suggesting the majority of DLAs are heated by radiation fields generated by a limited range of star formation rates per unit H I area, between 10^{-3} and 10^{-2} Msol/kpc^2. We also show that CII* absorption is unlikely to arise in gas that is ionized.
We present accurate metallicity measurements for 121 damped Lya systems at 0.5<z<5 including ~50 new measurements from our recently published Echellette Spectrograph and Imager surveys. This dataset is analysed to determine the age-metallicity relati on of neutral gas in the universe. Contrary to previous datasets this sample shows statistically significant evolution in the mean metallicity. The best linear fit rate to metallicity vs. redshift is -0.26 +/- 0.07 dex corresponding to approximately a factor of 2 every Gyr at z=3. The DLA continue to maintain a floor in metallicity of ~1/700 solar independent of observational effects. This metallicity threshold limits the prevalence of primordial gas in high redshift galaxies and stresses the correspondence between damped systems and star formation (i.e. galaxy formation). This floor is significantly offset from the metallicity of the Lya forest and therefore we consider it to be more related to active star formation within these galaxies than scenarios of enrichment in the very early universe. Finally, we comment on an apparent missing metals problem: the mean metallicity of the damped systems is ~10x lower than the value expected from their observed star formation history. This problem is evident in current theoretical treatments of chemical evolution and galaxy formation; it may indicate a serious flaw in our understanding of the interplay between star formation and metal production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا