ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical models for Bump Cepheids

265   0   0.0 ( 0 )
 نشر من قبل Marcella Marconi
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Bono




اسأل ChatGPT حول البحث

We present the results of a theoretical investigation aimed at testing whether full amplitude, nonlinear, convective models account for the I-band light curves of Bump Cepheids in the Large Magellanic Cloud (LMC). We selected two objects from the OGLE sample that show a well-defined bump along the decreasing (short-period) and the rising (long-period) branch respectively. We find that current models do reproduce the luminosity variation over the entire pulsation cycle if the adopted stellar mass is roughly 15 % smaller than predicted by evolutionary models that neglect both mass loss and convective core overshooting. Moreover, we find that the fit to the light curve of the long-period Cepheid located close to the cool edge of the instability strip requires an increase in the mixing length from 1.5 to 1.8 Hp. This suggests an increase in the efficiency of the convective transport when moving toward cooler effective temperatures. Current pulsation calculations supply a LMC distance modulus ranging from 18.48 to 18.58 mag.

قيم البحث

اقرأ أيضاً

73 - M. Marconi 2004
A theoretical investigation of the pulsation behavior of so-named ``anomalous Cepheids is presented. The study is based on nonlinear convective pulsation models with $Z$=0.0001 and 0.0004, mass in the range 1.3-2.2 Mo and various luminosity levels. B ased on these computations, we derive period, bolometric light curves and the edges of the instability strip, showing that a variation of the metal abundance from Z=0.0001 to 0.0004 has quite small effects on these quantities. Then, using bolometric corrections and color-temperature transformations, we are able to provide the predicted relations connecting pulsational properties (periods, amplitudes) with magnitudes and colors in the various photometric bands. The theoretical pulsational scenario is compared to observed anomalous Cepheids in dwarf spheroidal galaxies and, in particular, the predicted mass-dependent Period-Magnitude-Amplitude and Period-Magnitude-Color relations are used to estimate individual mass values, as well as to discriminate between fundamental (F) and first-overtone (FO) pulsators.
We present a new extended and detailed set of models for Classical Cepheid pulsators at solar chemical composition ($Z=0.02$, $Y=0.28$) based on a well tested nonlinear hydrodynamical approach. In order to model the possible dependence on crucial ass umptions such as the Mass-Luminosity relation of central Helium burning intermediate-mass stars or the efficiency of superadiabatic convection, the model set was computed by varying not only the pulsation mode and the stellar mass but also the Mass-Luminosity relation and the mixing length parameter that is used to close the system of nonlinear hydrodynamical and convective equations. The dependence of the predicted boundaries of the instability strip as well as of both light and radial velocity curves on the assumed Mass-Luminosity and the efficiency of superadiabatic convection is discussed. Nonlinear Period-Mass-Luminosity-Temperature, Period-Radius and Period-Mass-Radius relations are also computed. The theoretical atlas of bolometric light curves for both the fundamental and first overtone mode has been converted in the Gaia filters $G$, $G_{BP}$ and $G_{BR}$ and the corresponding mean magnitudes have been derived. Finally the first theoretical Period-Luminosity-Color and Period-Wesenheit relations in the Gaia filters are provided and the resulting theoretical parallaxes are compared with Gaia Data Release 2 results for both fundamental and first overtone Galactic Cepheids.
Previous nonlinear fundamental pulsation models for classical Cepheids with metal content Z <= 0.02 are implemented with new computations at super-solar metallicity (Z=0.03, 0.04) and selected choices of the helium-to-metal enrichment ratio DeltaY/De lta Z. On this basis, we show that the location into the HR diagram of the Cepheid instability strip is dependent on both metal and helium abundance, moving towards higher effective temperatures with decreasing the metal content (at fixed Y) or with increasing the helium content (at fixed Z). The contributions of helium and metals to the predicted Period-Luminosity and Period-Luminosity-Color relations are discussed, as well as the implications on the Cepheid distance scale. Based on these new results, we finally show that the empirical metallicity correction suggested by Cepheid observations in two fields of the galaxy M101 may be accounted for, provided that the adopted helium-to-metal enrichment ratio is reasonably high (Delta Y/Delta Z ~ 3.5).
111 - David M. Nataf 2014
We compare model predictions to observations of star counts in the red giant branch bump (RGBB) relative to the number density of first-ascent red giant branch at the magnitude of the RGBB, $EW_{RGBB}$. The predictions are shown to exceed the data by $(5.2 pm 4.3)$% for the BaSTI models and by $(17.1 pm 4.3)$% for the Dartmouth models, where the listed errors are purely statistical. These two offsets are brought to zero if the Galactic globular cluster metallicity scale is assumed to be overestimated by a linear shift of $sim 0.11$ dex and $sim 0.36$ dex respectively. This inference based on RGBB star counts goes in the opposite direction to the increase in metallicities of ${Delta}$[M/H]$approx$0.20 dex that would be required to fix the offset between predicted and observed RGBB luminosities. This comparison is a constraint on deep mixing models of stellar interiors, which predict decreased rather than increased RGBB star counts. We tabulate the predictions for RGBB star counts as a function of [Fe/H], [$alpha$/Fe], CNONa, initial helium abundance, and age. Though our study suggests a small zero-point calibration issue, RGBB star counts should nonetheless be an actionable parameter with which to constrain stellar populations in the differential sense. The most significant outliers are toward the clusters NGC 5025 (M53), NGC 6723, and NGC 7089 (M2), each of which shows a $sim 2 sigma$ deficit in their RGBB star counts.
Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disk and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disk plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theoretical models and techniques to understand the Milky Way bulge. Despite the progresses in recent theoretical attempts, a complete bulge formation model that explains the full kinematics and metallicity distribution is still not fully understood. Upcoming large surveys are expected to shed new light on the formation history of the Galactic bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا