ﻻ يوجد ملخص باللغة العربية
We report on spectral and timing observations of the nearest millisecond pulsar J0437-4715 with Chandra. The pulsar spectrum, detected up to 7 keV, cannot be described by a simple one-component model. We suggest that it consists of two components, a nonthermal power-law spectrum generated in the pulsar magnetosphere, with a photon index about 2, and a thermal spectrum emitted by heated polar caps, with a temperature decreasing outwards from 2 MK to 0.5 MK. The lack of spectral features in the thermal component suggests that the neutron star surface is covered by a hydrogen (or helium) atmosphere. The timing analysis shows one X-ray pulse per period, with a pulsed fraction of about 40% and the peak at the same pulse phase as the radio peak. No synchrotron pulsar-wind nebula is seen in the X-rays.
We present a hard X-ray NuSTAR observation of PSR J0437-4715, the nearest millisecond pulsar. The known pulsations at the apparent pulse period ~5.76 ms are detected at energies up to 20 keV. We measure a photon index $Gamma= 1.65pm0.24$ (90% confide
Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Halpha. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0
Intensity scintillations of radio pulsars are known to originate from interference between waves scattered by the electron density irregularities of interstellar plasma, often leading to parabolic arcs in the two-dimensional power spectrum of the rec
Pulsating thermal X-ray emission from millisecond pulsars can be used to obtain constraints on the neutron star equation of state, but to date only five such sources have been identified. Of these five millisecond pulsars, only two have well constrai