ﻻ يوجد ملخص باللغة العربية
We analyze observations of the microwave sky made with the Python experiment in its fifth year of operation at the Amundsen-Scott South Pole Station in Antarctica. After modeling the noise and constructing a map, we extract the cosmic signal from the data. We simultaneously estimate the angular power spectrum in eight bands ranging from large (l ~ 40) to small (l ~ 260) angular scales, with power detected in the first six bands. There is a significant rise in the power spectrum from large to smaller (l ~ 200) scales, consistent with that expected from acoustic oscillations in the early Universe. We compare this Python V map to a map made from data taken in the third year of Python. Python III observations were made at a frequency of 90 GHz and covered a subset of the region of the sky covered by Python V observations, which were made at 40 GHz. Good agreement is obtained both visually (with a filtered version of the map) and via a likelihood ratio test.
We constrain Galactic foreground contamination of the Python V cosmic microwave background anisotropy data by cross correlating it with foreground contaminant emission templates. To model foreground emission we use 100 and 12 $mu$m dust emission temp
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-
We study the cosmic microwave background (CMB) anisotropy due to spherically symmetric nonlinear structures in flat universes with dust and a cosmological constant. By modeling a time-evolving spherical compensated void/lump by Lemaitre-Tolman-Bondi
We discuss the cosmological implications of the new constraints on the power spectrum of the Cosmic Microwave Background Anisotropy derived from a new high resolution analysis of the MAXIMA-1 measurement (Lee et al. 2001). The power spectrum shows ex