ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Westerbork 1.4 GHz Imaging of the Bootes Field

75   0   0.0 ( 0 )
 نشر من قبل Wim de Vries
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from our deep (16x12 hour) Westerbork Synthesis Radio Telescope (WSRT) observations of the approximately 7 square degree Bootes Deep Field, centered at 14h32m05.75s, 34d1647.5 (J2000). Our survey consists of 42 discrete pointings, with enough overlap to ensure a uniform sensitivity across the entire field, with a limiting sensitivity of 28 microJy (1 sigma rms). The catalog contains 3172 distinct sources, of which 316 are resolved by the 13x27 beam. The Bootes field is part of the optical/near-infrared imaging and spectroscopy survey effort conducted at various institutions. The combination of these data sets, and the deep nature of the radio observations will allow unique studies of a large range of topics including the redshift evolution of the luminosity function of radio sources, the K-z relation and the clustering environment of radio galaxies, the radio / far-infrared correlation for distant starbursts, and the nature of obscured radio loud AGN.

قيم البحث

اقرأ أيضاً

82 - E. Carretti , S. Poppi , W. Reich 2005
Polarized diffuse emission observations at 1.4-GHz in a high Galactic latitude area of the northern Celestial hemisphere are presented. The 3.2 X 3.2 deg^2 field, centred at RA = 10h 58m, Dec = +42deg 18 (B1950), has Galactic coordinates l~172deg, b~ +63deg and is located in the region selected as northern target of the BaR-SPOrt experiment. Observations have been performed with the Effelsberg 100-m telescope. We find that the angular power spectra of the E- and B-modes have slopes of beta_E = -1.79 +/- 0.13 and beta_B = -1.74 +/- 0.12, respectively. Because of the very high Galactic latitude and the smooth emission, a weak Faraday rotation action is expected, which allows both a fair extrapolation to Cosmic Microwave Background Polarization (CMBP) frequencies and an estimate of the contamination by Galactic synchrotron emission. We extrapolate the E-mode spectrum up to 32-GHz and confirm the possibility to safely detect the CMBP E-mode signal in the Ka band found in another low emission region (Carretti et al. 2005b). Extrapolated up to 90-GHz, the Galactic synchrotron B-mode looks to compete with the cosmic signal only for models with a tensor-to-scalar perturbation power ratio T/S < 0.001, which is even lower than the T/S value of 0.01 found to be accessible in the only other high Galactic latitude area investigated to date. This suggests that values as low as T/S = 0.01 might be accessed at high Galactic latitudes. Such low emission values can allow a significant red-shift of the best frequency to detect the CMBP B-mode, also reducing the contamination by Galactic dust, and opening interesting perspectives to investigate Inflation models.
We have conducted a deep survey (with a central rms of $55mutextrm{Jy}$) with the LOw Frequency ARray (LOFAR) at 120-168 MHz of the Bootes field, with an angular resolution of $3.98^{}times6.45^{}$, and obtained a sample of 10091 radio sources ($5sig ma$ limit) over an area of $20:textrm{deg}^{2}$. The astrometry and flux scale accuracy of our source catalog is investigated. The resolution bias, incompleteness and other systematic effects that could affect our source counts are discussed and accounted for. The derived 150 MHz source counts present a flattening below sub-mJy flux densities, that is in agreement with previous results from high- and low- frequency surveys. This flattening has been argued to be due to an increasing contribution of star-forming galaxies and faint active galactic nuclei. Additionally, we use our observations to evaluate the contribution of cosmic variance to the scatter in source counts measurements. The latter is achieved by dividing our Bootes mosaic into 10 non-overlapping circular sectors, each one with an approximate area of $2:textrm{deg}^{2}.$ The counts in each sector are computed in the same way as done for the entire mosaic. By comparing the induced scatter with that of counts obtained from depth observations scaled to 150MHz, we find that the $1sigma$ scatter due to cosmic variance is larger than the Poissonian errors of the source counts, and it may explain the dispersion from previously reported depth source counts at flux densities $S<1,textrm{mJy}$. This work demonstrates the feasibility of achieving deep radio imaging at low-frequencies with LOFAR.
We present a high-resolution radio survey of the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a.k.a. Stripe 82. This 1.4 GHz survey was conducted with the Very Large Array (VLA) primarily in the A-configuration, with supplemental B-con figuration data to increase sensitivity to extended structure. The survey has an angular resolution of 1.8 and achieves a median rms noise of 52 microJy/bm over 92 deg^2. This is the deepest 1.4 GHz survey to achieve this large of an area, filling a gap in the phase space between small, deep and large, shallow surveys. It also serves as a pilot project for a larger high-resolution survey with the Expanded Very Large Array (EVLA). We discuss the technical design of the survey and details of the observations, and we outline our method for data reduction. We present a catalog of 17,969 isolated radio components, for an overall source density of ~195 sources/deg^2. The astrometric accuracy of the data is excellent, with an internal check utilizing multiply-observed sources yielding an rms scatter of 0.19 in both right ascension and declination. A comparison to the SDSS DR7 Quasar Catalog further confirms that the astrometry is well tied to the optical reference frame, with mean offsets of 0.02 +/- 0.01 in right ascension, and 0.01 +/- 0.02 in declination. A check of our photometry reveals a small, negative CLEAN-like bias on the level of 35 microJy. We report on the catalog completeness, finding that 97% of FIRST-detected quasars are recovered in the new Stripe 82 radio catalog, while faint, extended sources are more likely to be resolved out by the resolution bias. We conclude with a discussion of the optical counterparts to the catalog sources, including 76 newly-detected radio quasars. The full catalog as well as a search page and cutout server are available online at http://third.ucllnl.org/cgi-bin/stripe82cutout.
Modern radio telescopes are routinely reaching depths where normal starforming galaxies are the dominant observed population. Realising the potential of radio as a tracer of star formation and black hole activity over cosmic time involves achieving s uch depths over representative volumes, with radio forming part of a larger multiwavelength campaign. In pursuit of this we used the Karl G. Jansky Very Large Array (VLA) to image $sim$5 deg$^{2}$ of the VIDEO/XMM-LSS extragalactic deep field at 1--2 GHz. We achieve a median depth of 16 $mu$Jy beam$^{-1}$ with an angular resolution of 4.5arcsec. Comparisons with existing radio observations of XMM-LSS showcase the improved survey speed of the upgraded VLA: we cover 2.5 times the area and increase the depth by $sim$20% in 40% of the time. Direction-dependent calibration and wide-field imaging were required to suppress the error patterns from off-axis sources of even modest brightness. We derive a catalogue containing 5,762 sources from the final mosaic. Sub-band imaging provides in-band spectral indices for 3,458 (60%) sources, with the average spectrum becoming flatter than the canonical synchrotron slope below 1 mJy. Positional and flux-density accuracy of the observations, and the differential source counts are in excellent agreement with those of existing measurements. A public release of the images and catalogue accompanies this article.
We aim to study the nature of the faint, polarised radio source population whose source composition and redshift dependence contain information about the strength, morphology, and evolution of magnetic fields over cosmic timescales. We use a 15 point ing radio continuum L-band mosaic of the Lockman Hole, observed in full polarisation, generated from archival data of the WSRT. The data were analysed using the RM-Synthesis technique. We achieved a noise of 7 {mu}Jy/beam in polarised intensity, with a resolution of 15. Using infrared and optical images and source catalogues, we were able to cross-identify and determine redshifts for one third of our detected polarised sources. We detected 150 polarised sources, most of which are weakly polarised with a mean fractional polarisation of 5.4 %. With a total area of 6.5 deg^2 and a detection threshold of 6.25 {sigma} we find 23 polarised sources per deg^2. Based on our multi wavelength analysis, we find that our sample consists of AGN only. We find a discrepancy between archival number counts and those present in our data, which we attribute to sample variance. Considering the absolute radio luminosty, to distinguish weak and strong sources, we find a general trend of increased probability to detect weak sources at low redshift and strong sources at high redshift. Further, we find an anti-correlation between fractional polarisation and redshift for our strong sources sample at z{geq}0.6. A decrease in the fractional polarisation of strong sources with increasing redshift cannot be explained by a constant magnetic field and electron density over cosmic scales, however the changing properties of cluster environments over the cosmic timemay play an important role. Disentangling these two effects requires deeper and wider polarisation observations, and better models of the morphology and strength of cosmic magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا