ترغب بنشر مسار تعليمي؟ اضغط هنا

The Parker Instability in 3-D: Corrugations and Superclouds Along the Carina-Sagittarius Arm

68   0   0.0 ( 0 )
 نشر من قبل Jose Franco
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we present three-dimensional MHD models for the Parker instability in a thick magnetized disk, including the presence of a spiral arm. The $B$-field is assumed parallel to the arm, and the model results are applied to the optical segment of the Carina-Sagittarius arm. The characteristic features of the undular and interchange modes are clearly apparent in the simulations. The undular mode creates large gas concentrations distributed along the arm. This results in a clear arm/inter-arm difference: the instability triggers the formation of large interstellar clouds inside the arms, but generates only small structures with slight density enhancements in the inter-arm regions. The resulting clouds are distributed in an antisymmetric way with respect to the midplane, creating an azimuthal corrugation along the arm. For conditions similar to those of the optical segment of the Carina-Sagittarius arm, it has a wavelength of about 2.4 kpc. This structuring can explain the origin of both HI superclouds and the azimuthal corrugations in spiral arms. The wavelength matches the corrugation length derived with the young stellar groups located in the optical segment of the Carina-Sagittarius arm. Keywords: Galaxy: kinematics and dynamics -- Galaxy: structure -- Instabilities -- ISM: clouds -- ISM: magnetic fields -- ISM: structure -- MHD



قيم البحث

اقرأ أيضاً

We present the pilot results of the `MAGMO project, targeted observations of ground-state hydroxyl masers towards sites of 6.7-GHz methanol maser emission in the Carina-Sagittarius spiral arm tangent, Galactic longitudes 280 degrees to 295 degrees. T he `MAGMO project aims to determine if Galactic magnetic fields can be traced with Zeeman splitting of masers associated with star formation. Pilot observations of 23 sites of methanol maser emission were made, with the detection of ground-state hydroxyl masers towards 11 of these and six additional offset sites. Of these 17 sites, nine are new detections of sites of 1665-MHz maser emission, three of them accompanied by 1667-MHz emission. More than 70% of the maser features have significant circular polarization, whilst only ~10% have significant linear polarization (although some features with up to 100% linear polarization are found). We find 11 Zeeman pairs across six sites of high-mass star formation with implied magnetic field strengths between -1.5 mG and +3.8 mG and a median field strength of +1.6 mG. Our measurements of Zeeman splitting imply that a coherent field orientation is experienced by the maser sites across a distance of 5.3+/-2.0 kpc within the Carina-Sagittarius spiral arm tangent.
We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields and cosmic rays are all initially in a magnetohydrostatic eq uilibrium. This is done for different choices of initial cosmic ray density and magnetic field. The growth rates and characteristic scales obtained from the models, as well as their dependences on the density of cosmic rays and magnetic fields, are in broad agreement with previous (linearized, ideal) analytical work. However, this non-ideal instability develops a multi-modal 3D structure, which cannot be quantitatively predicted from the earlier linearized studies. This 3D signature of the instability will be of importance in interpreting observations. As a preliminary step towards such interpretations, we calculate synthetic polarized intensity and Faraday rotation measure maps, and the associated structure functions of the latter, from our simulations; these suggest that the correlation scales inferred from rotation measure maps are a possible probe for the cosmic ray content of a given galaxy. Our calculations highlight the importance of cosmic rays in these measures, making them an essential ingredient of realistic models of the interstellar medium.
305 - M. A. Kuhn 2021
Context: In spiral galaxies, star formation tends to trace features of the spiral pattern, including arms, spurs, feathers, and branches. However, in our own Milky Way, it has been challenging to connect individual star-forming regions to their large r Galactic environment owing to our perspective from within the disk. One feature in nearly all modern models of the Milky Way is the Sagittarius Arm, located inward of the Sun with a pitch angle of ~12 deg. Aims: We map the 3D locations and velocities of star-forming regions in a segment of the Sagittarius Arm using young stellar objects (YSOs) from the Spitzer/IRAC Candidate YSO (SPICY) catalog to compare their distribution to models of the arm. Methods: Distances and velocities for these objects are derived from Gaia EDR3 astrometry and molecular line surveys. We infer parallaxes and proper motions for spatially clustered groups of YSOs and estimate their radial velocities from the velocities of spatially associated molecular clouds. Results: We identify 25 star-forming regions in the Galactic longitude range l~4.0-18.5 deg arranged in a narrow, ~1 kpc long linear structure with a high pitch angle of $psi = 56$ deg and a high aspect ratio of ~7:1. This structure includes massive star-forming regions such as M8, M16, M17, and M20. The motions in the structure are remarkably coherent, with velocities in the direction of Galactic rotation of $240pm3$ km/s (slightly higher than average) and slight drifts toward the Galactic center (-4.3 km/s) and in the negative Z direction (-2.9 km/s). The rotational shear experienced by the structure is 4.6 km/s/kpc. Conclusions: The observed 56 deg pitch angle is remarkably high for a segment of the Sagittarius Arm. We discuss possible interpretations of this feature as a substructure within the lower pitch angle Sagittarius Arm, as a spur, or as an isolated structure.
93 - Jongsoo Kim 1997
A linear stability analysis has been done to a magnetized disk under a linear gravity. We have reduced the linearized perturbation equations to a second-order differential equation which resembles the Schr{o}dinger equation with the potential of a ha rmonic oscillator. Depending on the signs of energy and potential terms, eigensolutions can be classified into ``continuum and ``discrete families. When magnetic field is ignored, the continuum family is identified as the convective mode, while the discrete family as acoustic-gravity waves. If the effective adiabatic index $gamma$ is less than unity, the former develops into the convective instability. When a magnetic field is included, the continuum and discrete families further branch into several solutions with different characters. The continuum family is divided into two modes: one is the original Parker mode, which is a slow MHD mode modulated by the gravity, and the other is a stable Alfven mode. The Parker modes can be either stable or unstable depending on $gamma$. When $gamma$ is smaller than a critical value $gamma_{cr}$, the Parker mode becomes unstable. The discrete family is divided into three modes: a stable fast MHD mode modulated by the gravity, a stable slow MHD mode modulated by the gravity, and an unstable mode which is also attributed to a slow MHD mode. The unstable discrete mode does not always exist. Even though the unstable discrete mode exists, the Parker mode dominates it if the Parker mode is unstable. However, if $gamma ge gamma_{cr}$, the discrete mode could be the only unstable one. When $gamma$ is equal $gamma_{cr}$, the minimum growth time of the unstable discrete mode is $1.3 times 10^8$ years with a corresponding length scale of 2.4 kpc. It is suggestive that the corrugatory features seen in the Galaxy and external galaxies are related to the unstable discrete mode.
375 - Y. W. Wu , M. Sato , M. J. Reid 2014
We report measurements of parallaxes and proper motions of ten high-mass star-forming regions in the Sagittarius spiral arm of the Milky Way as part of the BeSSeL Survey with the VLBA. Combining these results with eight others from the literature, we investigated the structure and kinematics of the arm between Galactocentric azimuth around -2 and 65 deg. We found that the spiral pitch angle is 7.3 +- 1.5 deg; the arms half-width, defined as the rms deviation from the fitted spiral, is around 0.2 kpc; and the nearest portion of the Sagittarius arm is 1.4 +- 0.2 kpc from the Sun. Unlike for adjacent spiral arms, we found no evidence for significant peculiar motions of sources in the Sagittarius arm opposite to Galactic rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا