ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensing search towards M31

302   0   0.0 ( 0 )
 نشر من قبل Sebastiano CALCHI Novati
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results of the analysis of data collected during the 1998-99 observational campaign at the 1.3 meter McGraw-Hill Telescope, towards the Andromeda galaxy (M31), aimed to the detection of gravitational microlensing effects as a probe of the presence of dark matter in our and in M31 halo. The analysis is performed using the pixel lensing technique, which consists in the study of flux variations of unresolved sources and has been proposed and implemented by the AGAPE collaboration. We carry out a shape analysis by demanding that the detected flux variations be achromatic and compatible with a Paczynski light curve. We apply the Durbin-Watson hypothesis test to the residuals. Furthermore, we consider the background of variables sources. Finally five candidate microlensing events emerge from our selection. Comparing with the predictions of a Monte Carlo simulation, assuming a standard spherical model for the M31 and Galactic haloes, and typical values for the MACHO mass, we find that our events are only marginally consistent with the distribution of observable parameters predicted by the simulation.



قيم البحث

اقرأ أيضاً

(Short version) The nature and the location of the lenses discovered in the microlensing surveys done so far towards the LMC remain unclear. This contribution is comprised of two distinct parts. In the first part, motivated by these questions, we com pute the optical depth for the different intervening populations an the number of expected events for self-lensing, using a recently drawn coherent picture of the geometrical structure and dynamics of the LMC disk. In the second part (section 5), a preliminary account of the final results from the EROS-2 programme is presented. Based on the analysis of 33 million LMC and SMC stars followed during 6.7 years, strict limits on the macho content of the galactic halo are presented; they cover the range of macho masses between 0.0001 and 100 solar mass. The limits are better than 20% (resp. 5%) of the standard halo for masses between 0.0002 and 10 (resp. 0.001 to 0.1) solar mass. This is presently the data set with the largest sensitivity to halo machos.
We report the final analysis of a search for microlensing events in the direction of the Andromeda galaxy, which aimed to probe the MACHO composition of the M31 halo using data collected during the 1998-99 observational campaign at the MDM observator y. In a previous paper, we discussed the results from a first set of observations. Here, we deal with the complete data set, and we take advantage of some INT observations in the 1999-2000 seasons. This merging of data sets taken by different instruments turns out to be very useful, the study of the longer baseline available allowing us to test the uniqueness characteristic of microlensing events. As a result, all the candidate microlensing events previously reported turn out to be variable stars. We further discuss a selection based on different criteria, aimed at the detection of short--duration events. We find three candidates whose positions are consistent with self--lensing events, although the available data do not allow us to conclude unambiguously that they are due to microlensing.
111 - Y. C. Joshi 2004
We report our first microlensing candidate NMS-E1 towards M31 from the data accumulated during the four years of Nainital Microlensing Survey. Cousin R and I band observations of ~13x13 field in the direction of M31 have been carried out since 1998 a nd data is analysed using the pixel technique proposed by the AGAPE collaboration. NMS-E1 lies in the disk of M31 at alpha = 0:43:33.3 and delta = +41:06:44, about 15.5 arcmin to the South-East direction of the center of M31. The degenerate Paczy{n}ski fit gives a half intensity duration of ~59 days. The photometric analysis of the candidate shows that it reached R~20.1 mag at the time of maximum brightness and the colour of the source star was estimated to be (R-I)_0 ~ 1.1 mag. The microlensing candidate is blended by red variable stars; consequently the light curves do not strictly follow the characteristic Paczy{n}ski shape and achromatic nature. However its long period monitoring and similar behaviour in R and I bands supports its microlensing nature.
66 - V. Belokurov 2004
An automated search is carried out for microlensing events using a catalogue of 44554 variable superpixel lightcurves derived from our three-year monitoring program of M31. Each step of our candidate selection is objective and reproducible by a compu ter. Our search is unrestricted, in the sense that it has no explicit timescale cut. So, it must overcome the awkward problem of distinguishing long-timescale microlensing events from long-period stellar variables. The basis of the selection algorithm is the fitting of the superpixel lightcurves to two different theoretical models, using variable star and blended microlensing templates. Only if microlensing is preferred is an event retained as a possible candidate. Further cuts are made with regard to (i) sampling, (ii) goodness of fit of the peak to a Paczynski curve, (iii) consistency of the microlensing hypothesis with the absence of a resolved source, (iv) achromaticity, (v) position in the colour-magnitude diagram and (vi) signal-to-noise ratio. Our results are reported in terms of first-level candidates, which are the most trustworthy, and second-level candidates, which are possible microlensing but have lower signal-to-noise and are more questionable. The pipeline leaves just 3 first-level candidates, all of which have very short full-width half-maximum timescale (<5 days) and 3 second-level candidates, which have timescales of 31, 36 and 51 days respectively. We also show 16 third-level lightcurves, as an illustration of the events that just fail the threshold for designation as microlensing candidates. They are almost certainly mainly variable stars. Two of the 3 first-level candidates correspond to known events (PA 00-S3 and PA 00-S4) already reported by the POINT-AGAPE project. The remaining first-level candidate is new.
Microlensing is the tool of choice for the search and the analysis of compact halo objects (MACHOs), a still viable class of dark matter candidates at the galactic scale. Different analyses point towards an agreement in excluding dark matter MACHOs o f less than about 0.1 solar mass; it remains however an ongoing debate for values in the mass range (0.1-1) solar mass. The more robust constraints, though not all in agreement, come from the observational campaigns towards the Magellanic Clouds (the LMC and the SMC). The analyses towards the nearby galaxy of M31, in the so called pixel lensing regime, have expanded the perspectives in this field of research. In this contribution first we draw a critical view on recent results and then we focus on the pixel lensing analysis towards M31 of the PLAN collaboration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا