ترغب بنشر مسار تعليمي؟ اضغط هنا

Omega Centauri as a Disrupted Dwarf Galaxy: Evidence from Multiple Stellar Populations

69   0   0.0 ( 0 )
 نشر من قبل Chang H. Ree
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Young-Wook Lee




اسأل ChatGPT حول البحث

Our recent CCD photometry (Lee et al. 1999) has shown, for the first time, that omega Cen has several distinct stellar populations, which is reminiscent of the Sagittarius dwarf galaxy. Here we present more detailed analysis of the data along with the population models. We confirm the presence of several distinct red-giant-branches (RGBs) with a red metal-rich sequence well separated from other bluer metal-poor ones. Our population models suggest the red clump associated with the most metal-rich RGB is about 4 Gyr younger than the dominant metal-poor component, indicating that omega Cen was enriched over this timescale. These features, taken together with this clusters other unusual characteristics, provide good evidence that omega Cen was once part of a more massive system that merged with the Milky Way, as the Sagittarius dwarf galaxy is in the process of doing now. Mergers probably were much more frequent in the early history of the Galaxy and omega Cen appears to be a relict of this era.



قيم البحث

اقرأ أيضاً

133 - A. Bellini 2009
We present a detailed study of the radial distribution of the multiple populations identified in the Galactic globular cluster omega Cen. We used both space-based images (ACS/WFC and WFPC2) and ground-based images (FORS1@VLT and [email protected] ESO telescop es) to map the cluster from the inner core to the outskirts (~20 arcmin). These data sets have been used to extract high-accuracy photometry for the construction of color-magnitude diagrams and astrometric positions of ~900 000 stars. We find that in the inner ~2 core radii the blue main sequence (bMS) stars slightly dominate the red main sequence (rMS) in number. At greater distances from the cluster center, the relative numbers of bMS stars with respect to rMS drop steeply, out to ~8 arcmin, and then remain constant out to the limit of our observations. We also find that the dispersion of the Gaussian that best fits the color distribution within the bMS is significantly greater than the dispersion of the Gaussian that best fits the color distribution within the rMS. In addition, the relative number of intermediate-metallicity red-giant-branch stars which includes the progeny of the bMS) with respect to the metal-poor component (the progeny of the rMS) follows a trend similar to that of the main-sequence star-count ratio N_bMS/N_rMS. The most metal-rich component of the red-giant branch follows the same distribution as the intermediate-metallicity component. We briefly discuss the possible implications of the observed radial distribution of the different stellar components in omega Cen.
115 - Andrew B. Pace 2020
We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a new Keck/DEIMOS spectroscopic survey of the Ursa Minor (UMi) dSph. We identify 892 likely members, making this the largest UMi sample with line-of-sight velocity and metallicity measurements. Our Bayesian method detects two distinct chemodynamic populations with high significance ($ln{B}sim33$). The metal-rich ($[{rm Fe/H}]=-2.05pm0.03$) population is kinematically colder (radial velocity dispersion of $sigma_v=4.9pm0.8 , {rm km , s^{-1}}$) and more centrally concentrated than the metal-poor ($[{rm Fe/H}]=-2.29pm0.05$) and kinematically hotter population ($sigma_v =11.5pm0.9, {rm km , s^{-1}}$). Furthermore, we apply the same analysis to an independent MMT/Hectochelle data set and confirm the existence of two chemodynamic populations in UMi. In both data sets, the metal-rich population is significantly flattened ($epsilon=0.75pm0.03$) and the metal-poor population is closer to spherical ($epsilon=0.33_{-0.09}^{+0.12}$). Despite the presence of two populations, we are unable to robustly estimate the slope of the dynamical mass profile. We found hints for prolate rotation of order $sim 2 , {rm km , s^{-1}}$ in the MMT data set, but further observations are required to verify this. The flattened metal-rich population invalidates assumptions built into simple dynamical mass estimators, so we computed new astrophysical dark matter annihilation (J) and decay profiles based on the rounder, hotter metal-poor population and inferred $log_{10}{(J(0.5^{circ})/{rm GeV^{2} , cm^{-5}})}approx19.1$ for the Keck data set. Our results paint a more complex picture of the evolution of Ursa Minor than previously discussed.
We perform N-body simulations of the dynamical evolution of a dwarf galaxy falling into the Milky Way galaxy in order to understand the formation scenario of the peculiar globular cluster $omega$ Centauri. We use self-consistent models of the bulge a nd the disc of the Milky Way, as well as of the dwarf galaxy, and explore a range of dwarf models with different density distributions. Namely, we use King (1966) and Hernquist (1990) density profiles to model the density distribution in the dwarf. The central region of our King model has a density profile approximately $propto r^{-2}$, while that of the Hernquist model is $propto r^{-1}$. The difference in the dwarfs density distributions leads to distinct evolutionary scenarios. The King model dwarf loses its mass exponentially as a function of apocentric distance, with the mass-loss rate depending on the initial mass and size of the dwarf. Regardless of the initial mass and size, the King model dwarf remains more massive than $10^8$ msun after a few Gyr of evolution. The Hernquist model dwarf experiences an accelerated mass loss, and the mass of the remnant falls below $10^8$ msun within a few Gyr. By exploring an appropriate set of parameters, we find a Hernquist model that can attain the mass and orbital characteristics of $omega$ Cen after a few Gyr.
115 - A. Bellini 2013
We have applied our empirical-PSF-based photometric techniques on a large number of calibration-related WFC3/UVIS UV-B exposures of the core of {omega} Cen, and found a well-defined split in the right part of the white-dwarf cooling sequence (WDCS). The redder sequence is more populated by a factor of ~2. We can explain the separation of the two sequences and their number ratio in terms of the He-normal and He-rich subpopulations that had been previously identified along the cluster main sequence. The blue WDCS is populated by the evolved stars of the He-normal component (~0.55 Msun CO-core DA objects) while the red WDCS hosts the end-products of the He-rich population (~0.46 Msun objects, ~10% CO-core and ~90% He-core WDs). The He-core WDs correspond to He-rich stars that missed the central He-ignition, and we estimate their fraction by analyzing the population ratios along the cluster horizontal branch.
Historically, photometry has been largely used to identify stellar populations (MPs) in Globular Clusters (GCs) by using diagrams that are based on colours and magnitudes that are mostly sensitive to stars with different metallicities or different ab undances of helium, carbon, nitrogen and oxygen. In particular, the pseudo two-colour diagram called chromosome map (ChM), allowed the identification and the characterization of MPs in about 70 GCs by using appropriate filters of the Hubble Space Telescope (HST) that are sensitive to the stellar content of He, C, N, O and Fe. We use here high-precision HST photometry from F275W, F280N, F343N, F373N, and F814W images of Omega Centauri to investigate its MPs. We introduce a new ChM whose abscissa and ordinate are mostly sensitive to stellar populations with different magnesium and nitrogen, respectively, in monometallic GCs. This ChM is effective in disentangling the MPs based on their Mg chemical abundances, allowing us to explore, for the first time, possible relations between the production of these elemental species for large samples of stars in GCs. By comparing the colours of the distinct stellar populations with the colours obtained from appropriate synthetic spectra we provide photometric-like estimates of the chemical composition of each population. Our results show that, in addition to first generation (1G) stars, the metal-poor population of Omega Centauri hosts four groups of second-generation stars with different [N/Fe], namely, 2GA--D. 2GA stars share nearly the same [Mg/Fe] as the 1G, whereas 2GB, 2GC and 2GD stars are Mg depleted by ~0.15, ~0.25 and ~0.45 dex, respectively. We provide evidence that the metal-intermediate populations host stars with depleted [Mg/Fe].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا