ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitationally lensed high redshift galaxies in the field of 1E0657-56

68   0   0.0 ( 0 )
 نشر من قبل Doerte Mehlert
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present images and long-slit spectra obtained with FORS1 at UT1 of the VLT centered on the gravitational arc of the galaxy cluster 1E0657-56 (z = 0.296). The cluster is one of the hottest, most massive clusters known so far and acts as a powerful gravitational telescope, amplifying the flux of background sources by up to a factor of 17. We present photometric results together with the spectra of the gravitational arc (z = 3.24) and four additional amplified high redshift objects (z = 2.34 to 3.08) that were also included in the slit by chance coincidence. A magnification map has been obtained from a lens model derived from the multiple image systems. We compare our observed spectra with models and briefly discuss the stellar contents of these galaxies. Furthermore we measured the equivalent widths of the CIV 1550 and SiIV 1400 absorption lines for the objects behind 1E0657-56 studied here, as well as for some additional starburst galaxies (nearby and at high z). For CIV we find an increasing absorption equivalent width with decreasing redshift. We discuss whether this correlation could be related to the increase of metallicity with the age of the universe.

قيم البحث

اقرأ أيضاً

63 - M. Bradav{c} 2009
The gravitational potential of clusters of galaxies acts as a cosmic telescope allowing us to find and study galaxies at fainter limits than otherwise possible and thus probe closer to the epoch of formation of the first galaxies. We use the Bullet C luster 1E0657-56 (z = 0.296) as a case study, because its high mass and merging configuration makes it one of the most efficient cosmic telescopes we know. We develop a new algorithm to reconstruct the gravitational potential of the Bullet Cluster, based on a non-uniform adaptive grid, combining strong and weak gravitational lensing data derived from deep HST/ACS F606W-F775W-F850LP and ground-based imaging. We exploit this improved mass map to study z~5-6 Lyman Break Galaxies (LBGs), which we detect as dropouts. One of the LBGs is multiply imaged, providing a geometric confirmation of its high redshift, and is used to further improve our mass model. We quantify the uncertainties in the magnification map reconstruction in the intrinsic source luminosity, and in the volume surveyed, and show that they are negligible compared to sample variance when determining the luminosity function of high-redshift galaxies. With shallower and comparable magnitude limits to HUDF and GOODS, the Bullet cluster observations, after correcting for magnification, probe deeper into the luminosity function of the high redshift galaxies than GOODS and only slightly shallower than HUDF. We conclude that accurately focused cosmic telescopes are the most efficient way to sample the bright end of the luminosity function of high redshift galaxies and - in case they are multiply imaged - confirm their redshifts.
We identify the extended Einstein IPC X-ray source, 1E0657-56, with a previously unknown cluster of galaxies at a redshift of $z=0.296$. Optical CCD images show the presence of a gravitational arc in this cluster and galaxy spectra yield a cluster ve locity dispersion of $1213^{+352}_{-191}$ km s$^{-1}$. X-ray data obtained with the ROSAT HRI and ASCA indicate that 1E0657-56 is a highly luminous cluster in which a merger of subclusters may be occurring. The temperature of the hot gas in 1E0657-56 is $rm{kT}=17.4 pm 2.5 keV$, which makes it an unusually hot cluster, with important cosmological implications.
We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTE C 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.
We present deep spectroscopic observations of a Lyman-break galaxy candidate (hereafter MACS1149-JD) at $zsim9.5$ with the $textit{Hubble}$ Space Telescope ($textit{HST}$) WFC3/IR grisms. The grism observations were taken at 4 distinct position angle s, totaling 34 orbits with the G141 grism, although only 19 of the orbits are relatively uncontaminated along the trace of MACS1149-JD. We fit a 3-parameter ($z$, F160W mag, and Ly$alpha$ equivalent width) Lyman-break galaxy template to the three least contaminated grism position angles using an MCMC approach. The grism data alone are best fit with a redshift of $z_{mathrm{grism}}=9.53^{+0.39}_{-0.60}$ ($68%$ confidence), in good agreement with our photometric estimate of $z_{mathrm{phot}}=9.51^{+0.06}_{-0.12}$ ($68%$ confidence). Our analysis rules out Lyman-alpha emission from MACS1149-JD above a $3sigma$ equivalent width of 21 AA{}, consistent with a highly neutral IGM. We explore a scenario where the red $textit{Spitzer}$/IRAC $[3.6] - [4.5]$ color of the galaxy previously pointed out in the literature is due to strong rest-frame optical emission lines from a very young stellar population rather than a 4000 AA{} break. We find that while this can provide an explanation for the observed IRAC color, it requires a lower redshift ($zlesssim9.1$), which is less preferred by the $textit{HST}$ imaging data. The grism data are consistent with both scenarios, indicating that the red IRAC color can still be explained by a 4000 AA{} break, characteristic of a relatively evolved stellar population. In this interpretation, the photometry indicate that a $340^{+29}_{-35}$ Myr stellar population is already present in this galaxy only $sim500~mathrm{Myr}$ after the Big Bang.
Bright gravitationally lensed galaxies provide our most detailed view of galaxies at high redshift. Yet as a result of the small number of ultra-bright z~2 lensed systems with confirmed redshifts, most detailed spectroscopic studies have been limited in their scope. With the goal of increasing the number of bright lensed galaxies available for detailed follow-up, we have undertaken a spectroscopic campaign targeting wide separation (>3 arcsec) galaxy-galaxy lens candidates within the Sloan Digital Sky Survey (SDSS). Building on the earlier efforts of our CASSOWARY survey, we target a large sample of candidate galaxy-galaxy lens systems in SDSS using a well-established search algorithm which identifies blue arc-like structures situated around luminous red galaxies. In this paper, we present a new redshift catalog containing 25 lensed sources in SDSS confirmed through spectroscopic follow-up of candidate galaxy-galaxy lens systems. Included in this new sample are two of the brightest galaxies (r=19.6 and 19.7) galaxies known at z~2, a low metallicity (12 + log (O/H)~8.0) extreme nebular line emitting galaxy at z=1.43, and numerous systems for which detailed follow-up will be possible. The source redshifts span 0.9<z<2.5 (median redshift of 1.9), and their optical magnitudes are in the range 19.6<r<22.3. We present a brief source-by-source discussion of the spectroscopic properties extracted from our confirmatory spectra and discuss some initial science results. With more than 50 gravitationally lensed z>1 galaxies now confirmed within SDSS, it will soon be possible for the first time to develop generalized conclusions from detailed spectroscopic studies of the brightest lensed systems at high redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا