ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 000301C: a possible short/intermediate duration burst connected to a DLA system

65   0   0.0 ( 0 )
 نشر من قبل Javier Gorosabel
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Gorosabel




اسأل ChatGPT حول البحث

We discuss two main aspects of the GRB 000301C afterglow (Fynbo et al. 2000, Jensen et al. 2000); its short duration and its possible connection with a Damped Ly-alpha Absorber (DLA). GRB 000301C falls in the short class of bursts, though it is consistent with belonging to the proposed intermediate class or the extreme short end of the distribution of long-duration GRBs. Based on two VLT spectra we estimate the HI column density to be Log(N(HI))=21.2+/-0.5. This is the first direct indication of a connection between GRB host galaxies and Damped Ly-alpha Absorbers.



قيم البحث

اقرأ أيضاً

Since the discovery of the first short-hard gamma-ray burst afterglows in 2005, the handful of observed events have been found to be embedded in nearby (z < 1), bright underlying galaxies. We present multiwavelength observations of the short-duration burst GRB 060121, which is the first observed to clearly outshine its host galaxy (by a factor >10^2). A photometric redshift for this event places the progenitor at a most probable redshift of z = 4.6, with a less probable scenario of z = 1.7. In either case, GRB 060121 could be the farthermost short-duration GRB detected to date and implies an isotropic-equivalent energy release in gamma-rays comparable to that seen in long-duration bursts. We discuss the implications of the released energy on the nature of the progenitor. These results suggest that GRB 060121 may belong to a family of energetic short-duration events, lying at z > 1 and whose optical afterglows would outshine their host galaxies, unlike the first short-duration GRBs observed in 2005. The possibility of GRB 060121 being an intermediate duration burst is also discussed.
On 2006 May 5, a four second duration, low energy, ~10^49 erg, Gamma-Ray Burst (GRB) was observed, spatially associated with a z=0.0894 galaxy. Here, we report the discovery of the GRB optical afterglow and observations of its environment using Gemin i-south, Hubble Space Telescope (HST), Chandra, Swift and the Very Large Array. The optical afterglow of this GRB is spatially associated with a prominent star forming region in the Sc-type galaxy 2dFGRS S173Z112. Its proximity to a star forming region suggests that the progenitor delay time, from birth to explosion, is smaller than about 10 Myr. Our HST deep imaging rules out the presence of a supernova brighter than an absolute magnitude of about -11 (or -12.6 in case of ``maximal extinction) at about two weeks after the burst, and limits the ejected mass of radioactive Nickel 56 to be less than about 2x10^-4 solar mass (assuming no extinction). Although it was suggested that GRB 060505 may belong to a new class of long-duration GRBs with no supernova, we argue that the simplest interpretation is that the physical mechanism responsible for this burst is the same as for short-duration GRBs.
The prompt emission of Gamma Ray Bursts (GRBs) is usually well described by the Band function: two power-laws joined smoothly at a given break energy. In addition to the Band component, a few bursts (GRB941017, GRB090510, GRB090902B and GRB090926A) s how clear evidence for a distinct high-energy spectral component, which in some cases evolves independently from the prompt keV component and is well described by a power-law (PL), sometimes with a cut-off energy; this component is found to have long duration, even longer than the burst itself for all the four bursts. Here we report the observation of an anomalous short duration high energy component in GRB980923. GRB980923 is one of the brightest Gamma-Ray Bursts (GRBs) observed by BATSE. Its light curve is characterized by a rapid variability phase lasting ~ 40 s, followed by a smooth emission tail lasting ~ 400 s. A detailed joint analysis of BATSE (LAD and SD) and EGRET TASC data of GRB980923 reveles the presence of an anomalous keV to MeV component in the spectrum that evolves independently from the prompt keV one. This component is well described by a PL with a spectral index of -1.44 and lasts only ~ 2 s; it represents one of the three clearly separated spectral components identified in GRB980923, the other two being the keV prompt emission, well described by the Band function and the tail, well fit by a Smoothly Broken Power Law (SBPL).
GRB 051103 is considered to be a candidate soft gamma repeater (SGR) extragalactic giant magnetar flare by virtue of its proximity on the sky to M81/M82, as well as its time history, localization, and energy spectrum. We have derived a refined interp lanetary network localization for this burst which reduces the size of the error box by over a factor of two. We examine its time history for evidence of a periodic component, which would be one signature of an SGR giant flare, and conclude that this component is neither detected nor detectable under reasonable assumptions. We analyze the time-resolved energy spectra of this event with improved time- and energy resolution, and conclude that although the spectrum is very hard, its temporal evolution at late times cannot be determined, which further complicates the giant flare association. We also present new optical observations reaching limiting magnitudes of R > 24.5, about 4 magnitudes deeper than previously reported. In tandem with serendipitous observations of M81 taken immediately before and one month after the burst, these place strong constraints on any rapidly variable sources in the region of the refined error ellipse proximate to M81. We do not find any convincing afterglow candidates from either background galaxies or sources in M81, although within the refined error region we do locate two UV bright star forming regions which may host SGRs. A supernova remnant (SNR) within the error ellipse could provide further support for an SGR giant flare association, but we were unable to identify any SNR within the error ellipse. These data still do not allow strong constraints on the nature of the GRB 051103 progenitor, and suggest that candidate extragalactic SGR giant flares will be difficult, although not impossible, to confirm.
We present multiwavelength (optical/near infrared/millimetre) observations of a short duration gamma-ray burst detected by Swift (GRB 050509b) collected between 0 seconds and ~18.8 days after the event. No optical, near infrared or millimetre emissio n has been detected in spite of the well localised X-ray afterglow, confirming the elusiveness of the short duration events. We also discuss the possibility of the burst being located in a cluster of galaxies at z= 0.225 or beyond. In the former case, the spectral energy distribution of the neighbouring, potential host galaxy, favours a system harbouring an evolved dominant stellar population (age ~360 Myr), unlike most long duration GRB host galaxies observed so far, i.e. thus giving support to a compact binary merger origin. Any underlying supernova that could be associated with this particular event should have been at least 3 magnitudes fainter than the type Ib/c SN 1998bw and 2.3 magnitudes fainter than a typical type Ia SN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا