ترغب بنشر مسار تعليمي؟ اضغط هنا

The Star Formation History of LGS 3

50   0   0.0 ( 0 )
 نشر من قبل Bryan W. Miller
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. W. Miller




اسأل ChatGPT حول البحث

We have determined the distance and star formation history of the Local Group dwarf galaxy LGS 3 from deep Hubble Space Telescope WFPC2 observations. LGS 3 is intriguing because ground-based observations showed that, while its stellar population is dominated by old, metal-poor stars, there is a handful of young, blue stars. Also, the presence of HI gas makes this a possible ``transition object between dwarf spheroidal and dwarf irregular galaxies. The HST data are deep enough to detect the horizontal branch and young main sequence for the first time. A new distance of D=620+/-20 kpc has been measured from the positions of the TRGB, the red clump, and the horizontal branch. The mean metallicity of the stars older than 8 Gyr is Fe/H = -1.5 +/- 0.3. The most recent generation of stars has Fe/H ~ -1. For the first few Gyr the global star formation rate was several times higher than the historical average and has been fairly constant since then. However, we do see significant changes in stellar populations and star formation history with radial position in the galaxy. Most of the young stars are found in the central 63 pc (21), where the star formation rate has been relatively constant, while the outer parts have had a declining star formation rate.

قيم البحث

اقرأ أيضاً

We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) to determine the star formation history (SFH) of M32 from its resolved stellar population. We find that 2-5Gyr old stars contribute som40%+/- 17% of M32s mass, while 55%+/-21% of M32s mass comes from stars older than 5 Gyr. The mass-weighted mean age and metallicity of M32 at F1 are <Age>=6.8+/-1.5 Gyr and <[M/H]>=-0.01+/-0.08 dex. The SFH additionally indicates the presence of young (<2 Gyr old), metal-poor ([M/H]sim-0.7) stars, suggesting that blue straggler stars contribute ~2% of the mass at F1; the remaining sim3% of the mass is in young metal-rich stars. Line-strength indices computed from the SFH imply a light-weighted mean age and metallicity of 4.9 Gyr and [M/H] = -0.12 dex, and single-stellar-population-equivalent parameters of 2.9+/-0.2 Gyr and [M/H]=0.02+/-0.01 dex at F1 (~2.7 re). This contradicts spectroscopic studies that show a steep age gradient from M32s center to 1re. The inferred SFH of the M31 background field F2 reveals that the majority of its stars are old, with sim95% of its mass already acquired 5-14 Gyr ago. It is composed of two dominant populations; sim30%+/-7.5% of its mass is in a 5-8 Gyr old population, and sim65%+/-9% of the mass is in a 8-14 Gyr old population. The mass-weighted mean age and metallicity of F2 are <Age>=9.2+/-1.2 Gyr and <[M/H]>=-0.10+/-0.10 dex, respectively. Our results suggest that the inner disk and spheroid populations of M31 are indistinguishable from those of the outer disk and spheroid. Assuming the mean age of M31s disk at F2 (sim1 disk scale length) to be 5-9 Gyr, our results agree with an inside-out disk formation scenario for M31s disk.
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ ment. There is strong observational support for the hierarchical assembly of galaxies, but our insight into this assembly comes from sifting through the resolved field populations of the surviving galaxies we see today, in order to reconstruct their star formation histories, chemical evolution, and kinematics. To obtain the detailed distribution of stellar ages and metallicities over the entire life of a galaxy, one needs multi-band photometry reaching solar-luminosity main sequence stars. The Hubble Space Telescope can obtain such data in the low-density regions of Local Group galaxies. To perform these essential studies for a fair sample of the Local Universe, we will require observational capabilities that allow us to extend the study of resolved stellar populations to much larger galaxy samples that span the full range of galaxy morphologies, while also enabling the study of the more crowded regions of relatively nearby galaxies. With such capabilities in hand, we will reveal the detailed history of star formation and chemical evolution in the universe.
97 - Ted K. Wyder 2001
Images of five fields in the Local Group dwarf irregular galaxy NGC 6822 obtained with the {it Hubble Space Telescope} in the F555W and F814W filters are presented. Photometry for the stars in these images was extracted using the Point-Spread-Functio n fitting program HSTPHOT/MULTIPHOT. The resulting color-magnitude diagrams reach down to $Vapprox26$, a level well below the red clump, and were used to solve quantitatively for the star formation history of NGC 6822. Assuming that stars began forming in this galaxy from low-metallicity gas and that there is little variation in the metallicity at each age, the distribution of stars along the red giant branch is best fit with star formation beginning in NGC 6822 12-15 Gyr ago. The best-fitting star formation histories for the old and intermediate age stars are similar among the five fields and show a constant or somewhat increasing star formation rate from 15 Gyr ago to the present except for a possible dip in the star formation rate from 3 to 5 Gyr ago. The main differences among the five fields are in the higher overall star formation rate per area in the bar fields as well as in the ratio of the recent star formation rate to the average past rate. These variations in the recent star formation rate imply that stars formed within the past 0.6 Gyr are not spatially very well mixed throughout the galaxy.
131 - Stefano Rubele 2009
The rich SMC star cluster NGC419 has recently been found to present both a broad main sequence turn-off and a dual red clump of giants, in the sharp colour-magnitude diagrams (CMD) derived from the High Resolution Channel of the Advanced Camera for S urveys on board the Hubble Space Telescope. In this work, we apply to the NGC419 data the classical method of star formation history (SFH) recovery via CMD reconstruction, deriving for the first time this function for a star cluster with multiple turn-offs. The values for the cluster metallicity, reddening, distance and binary fraction, were varied within the limits allowed by present observations. The global best-fitting solution is an excellent fit to the data, reproducing all the CMD features with striking accuracy. The corresponding star formation rate is provided together with estimates of its random and systematic errors. Star formation is found to last for at least 700 Myr, and to have a marked peak at the middle of this interval, for an age of 1.5 Gyr. Our findings argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1 Gyr. It remains to be tested whether alternative hypotheses, such as a main sequence spread caused by rotation, could produce similarly good fits to the data.
We present the first detailed quantitative study of the stellar populations of the Sagittarius (Sgr) streams within the Stripe 82 region, using photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS). The star formation hi story (SFH) is determined separately for the bright and faint Sgr streams, to establish whether both components consist of a similar stellar population mix or have a distinct origin. Best fit SFH solutions are characterised by a well-defined, tight sequence in age-metallicity space, indicating that star formation occurred within a well-mixed, homogeneously enriched medium. Star formation rates dropped sharply at an age of ~5-7 Gyr, possibly related to the accretion of Sgr by the MW. Finally, the Sgr sequence displays a change of slope in age-metallicity space at an age between 11-13 Gyr consistent with the Sgr alpha-element knee, indicating that supernovae type Ia started contributing to the abundance pattern ~1-3 Gyr after the start of star formation. Results for both streams are consistent with being drawn from the parent Sgr population mix, but at different epochs. The SFH of the bright stream starts from old, metal-poor populations and extends to a metallicity of [Fe/H]~-0.7, with peaks at ~7 and 11 Gyr. The faint SFH samples the older, more metal-poor part of the Sgr sequence, with a peak at ancient ages and stars mostly with [Fe/H]<-1.3 and age>9 Gyr. Therefore, we argue in favour of a scenario where the faint stream consists of material stripped i) earlier, and ii) from the outskirts of the Sgr dwarf.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا