ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploratory Chandra Observations of the Highest-Redshift Quasars: X-rays from the Dawn of the Modern Universe

144   0   0.0 ( 0 )
 نشر من قبل Cristian Vignali
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Vignali




اسأل ChatGPT حول البحث

We report exploratory Chandra observations of 14 high-redshift (z=4.06-5.27), optically selected quasars. Ten of these quasars are detected, increasing the number of z>4 X-ray detected quasars by 71%. Our detections include four of the five highest-redshift X-ray detected quasars to date, among them SDSSp J021043.17-001818.4, the highest-redshift (z=4.77) radio-loud quasar detected in the X-ray band. The four undetected objects are the Broad Absorption Line quasars SDSSp J112956.10-014212.4 and SDSSp 160501.21-011220.0, the weak emission-line quasar SDSSp J153259.96-003944.1, and the quasar PSS 1435+3057. A comparison of the quasars spectral energy distributions (by means of the optical-to-X-ray spectral index, alpha_ox) with those of lower-redshift samples indicates that the Chandra quasars are X-ray fainter by a factor of approx 2. X-ray faintness could be associated with the presence of large amounts of gas in the primeval galaxies harboring these high-redshift quasars, as suggested by recent studies conducted on z>4 quasars in other bands. Using the current Chandra data, predictions for the next generation of X-ray observatories, Constellation-X and Xeus, are also provided.



قيم البحث

اقرأ أيضاً

Quasars at z>4 provide direct information on the first massive structures to form in the Universe. Recent ground-based optical surveys (e.g., the Sloan Digital Sky Survey) have discovered large numbers of high-redshift quasars, increasing the number of known quasars at z>4 to ~500. Most of these quasars are suitable for follow-up X-ray studies. Here we review X-ray studies of the highest redshift quasars, focusing on recent advances enabled largely by the capabilities of Chandra and XMM-Newton. Overall, analyses indicate that the X-ray emission and broad-band properties of high-redshift and local quasars are reasonably similar, once luminosity effects are taken into account. Thus, despite the strong changes in large-scale environment and quasar number density that have occurred from z~0-6, individual quasar X-ray emission regions appear to evolve relatively little.
We report on exploratory Chandra observations of the three highest redshift quasars known (z = 5.82, 5.99, and 6.28), all found in the Sloan Digital Sky Survey. These data, combined with a previous XMM-Newton observation of a z = 5.74 quasar, form a complete set of color-selected, z > 5.7 quasars. X-ray emission is detected from all of the quasars at levels that indicate that the X-ray to optical flux ratios of z ~ 6 optically selected quasars are similar to those of lower redshift quasars. The observations demonstrate that it will be feasible to obtain quality X-ray spectra of z ~ 6 quasars with current and future X-ray missions.
112 - Ohad Shemmer 2006
We present new Chandra observations of 21 z>4 quasars, including 11 sources at z>5. These observations double the number of X-ray detected quasars at z>5, allowing investigation of the X-ray spectral properties of a substantial sample of quasars at t he dawn of the modern Universe. By jointly fitting the spectra of 15 z>5 radio-quiet quasars (RQQs), including sources from the Chandra archive, with a total of 185 photons, we find a mean X-ray power-law photon index of Gamma=1.95^{+0.30}_{-0.26}, and a mean neutral intrinsic absorption column density of N_H<~6x10^{22} cm^{-2}. These results show that quasar X-ray spectral properties have not evolved up to the highest observable redshifts. We also find that the mean optical-X-ray spectral slope (alpha_ox) of optically-selected z>5 RQQs, excluding broad absorption line quasars, is alpha_ox=-1.69+/-0.03, which is consistent with the value predicted from the observed relationship between alpha_ox and ultraviolet luminosity. Four of the sources in our sample are members of the rare class of weak emission-line quasars, and we detect two of them in X-rays. We discuss the implications our X-ray observations have for the nature of these mysterious sources and, in particular, whether their weak-line spectra are a consequence of continuum boosting or a deficit of high-ionization line emitting gas.
61 - L.C. Bassett 2004
We present the results of Chandra observations of six radio-loud quasars (RLQs) and one optically bright radio-quiet quasar (RQQ) at z = 4.1-4.4. These observations cover a representative sample of RLQs with moderate radio-loudness (R ~ 40-400), fill ing the X-ray observational gap between optically selected RQQs and the five known blazars at z > 4 (R ~ 800-27000). We study the relationship between X-ray luminosity and radio-loudness for quasars at high redshift and constrain RLQ X-ray continuum emission and absorption. From a joint spectral fit of nine moderate-R RLQs observed by Chandra, we find tentative evidence for absorption above the Galactic N_H, with a best-fit neutral intrinsic column density of N_H = 2.4^{+2.0}_{-1.8} x 10^{22} cm^{-2}, consistent with earlier claims of increased absorption toward high-redshift RLQs. We also search for evidence of an enhanced jet-linked component in the X-ray emission due to the increased energy density of the cosmic microwave background (CMB) at high redshift, but we find neither spatial detections of X-ray jets nor a significant enhancement in the X-ray emission relative to comparable RLQs at low-to-moderate redshifts. Overall, the z ~ 4-5 RLQs have basic X-ray properties consistent with comparable RLQs in the local universe, suggesting that the accretion/jet mechanisms of these objects are similar as well.
We present deep radio observations of the most distant complete quasar sample drawn from the Sloan Digital Sky Survey. Combining our new data with those from literature we obtain a sample which is ~100 per cent complete down to S_1.4GHz = 60 mu Jy ov er the redshift range 3.8 < z < 5. The fraction of radio detections is relatively high (~43 per cent), similar to what observed locally in bright optical surveys. Even though the combined radio and optical properties of quasars remain overall unchanged from z ~ 5 to the local Universe, there is some evidence for a slight over-abundance of radio-loud sources at the highest redshifts when compared with the lower-z regime. Exploiting the deep radio VLA observations we present the first attempt to directly derive the radio luminosity function of bright quasars at z ~ 4. The unique depth -- both in radio and optical -- allows us to thoroughly explore the population of optically bright FR~II quasars up to z ~ 5 and opens a window on the behaviour of the brightest FR~I sources. A close investigation of the space density of radio loud quasars also suggests a differential evolution, with the more luminous sources showing a less pronounced cut-off at high z when compared with the less luminous ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا