ﻻ يوجد ملخص باللغة العربية
We examine the late-time (nucleosynthesis and later) cosmological implications of brane-world scenarios having large (millimeter sized) extra dimensions. In particular, recent proposals for understanding why the extra dimensions are so large in these models indicate that moduli like the radion appear (to four-dimensional observers) to be extremely light, with a mass of order 10^{-33} eV, allowing them to play the role of the light scalar of quintessence models. The radion-as-quintessence solves a long-standing problem since its small mass is technically natural, in that it is stable against radiative corrections. Its challenges are to explain why such a light particle has not been seen in precision tests of gravity, and why Newtons constant has not appreciably evolved since nucleosynthesis. We find the couplings suggested by stabilization models can provide explanations for both of these questions. We identify the features which must be required of any earlier epochs of cosmology in order for these explanations to hold.
Brane cosmology presents many interesting possibilities including: phantom acceleration (w<-1), self-acceleration, unification of dark energy with inflation, transient acceleration, loitering cosmology, new singularities at which the Hubble parameter
We present a case that current observations may already indicate new gravitational physics on cosmological scales. The excess of power seen in the Lyman-alpha forest and small-scale CMB experiments, the anomalously large bulk flows seen both in pecul
A recently proposed mechanism for large-scale structure in string cosmology --based on massless axionic seeds-- is further analyzed and extended to the acoustic-peak region. Existence, structure, and normalization of the peaks turn out to depend cruc
We reconsider theories with low gravitational (or string) scale M_* where Newtons constant is generated via new large-volume spatial dimensions, while Standard Model states are localized to a 3-brane. Utilizing compact hyperbolic manifolds (CHMs) we
The holographic principle asserts that the entropy of a system cannot exceed its boundary area in Planck units. However, conventional quantum field theory fails to describe such systems. In this Letter, we assume the existence of large $n$ extra dime