ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Aspects of the s- and n-Processes in Massive Stars

60   0   0.0 ( 0 )
 نشر من قبل Thomas Rauscher
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Rauscher




اسأل ChatGPT حول البحث

In order to study the processes creating intermediate and heavy nuclei in massive stars it is necessary to provide neutron capture cross sections and reaction rates close to stability and for moderately unstable neutron-rich nuclei. Furthermore, one has to know the efficiency of neutron-releasing reactions in the main evolutionary phases of a massive star. We present simulations of the nucleosynthesis in a 15 and 25 solar mass star, for the first time followed completely from main sequence hydrogen burning until the type II supernova explosion including all nuclides up to Bi. Theoretical reaction rates were calculated with the NON-SMOKER code, providing a complete library of Hauser-Feshbach cross sections and rates for nuclear and astrophysical applications. Experimental rates at stability were taken from different sources. The impact of uncertainties in the rates on nucleosynthesis are illustrated by two examples, the reactions 62Ni(n,gamma)63Ni and 22Ne(alpha,n)25Mg.

قيم البحث

اقرأ أيضاً

The s-process in massive stars, producing nuclei up to $Aapprox 90$, has a different behaviour at low metallicity if stellar rotation is significant. This enhanced s-process is distinct from the s-process in massive stars around solar metallicity, an d details of the nucleosynthesis are poorly known. We investigated nuclear physics uncertainties in the enhanced s-process in metal-poor stars within a Monte-Carlo framework. We applied temperature-dependent uncertainties of reaction rates, distinguishing contributions from the ground state and from excited states. We found that the final abundance of several isotopes shows uncertainties larger than a factor of 2, mostly due to the neutron capture uncertainties. A few nuclei around branching points are affected by uncertainties in the $beta$-decay.
We investigated the impact of uncertainties in neutron-capture and weak reactions (on heavy elements) on the s-process nucleosynthesis in low-mass stars using a Monte-Carlo based approach. We performed extensive nuclear reaction network calculations that include newly evaluated temperature-dependent upper and lower limits for the individual reaction rates. Our sophisticated approach is able to evaluate the reactions that impact more significantly the final abundances. We found that beta-decay rate uncertainties affect typically nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are approximately 50%.
Various model-independent aspects of the $bar{K} N to K Xi$ reaction are investigated, starting from the determination of the most general structure of the reaction amplitude for $Xi$ baryons with $J^P=frac12^pm$ and $frac32^pm$ and the observables t hat allow a complete determination of these amplitudes. Polarization observables are constructed in terms of spin-density matrix elements. Reflection symmetry about the reaction plane is exploited, in particular, to determine the parity of the produced $Xi$ in a model-independent way. In addition, extending the work of Biagi $mathrm{textit{et al. } [Z. Phys. C textbf{34}, 175 (1987)]}$, a way is presented of determining simultaneously the spin and parity of the ground state of $Xi$ baryon as well as those of the excited $Xi$ states.
The s-process, a production mechanism based on slow-neutron capture during stellar evolution, is the origin of about half the elements heavier than iron. Abundance predictions for s-process nucleosynthesis depend strongly on the relevant neutron-capt ure and $beta$-decay rates, as well as on the details of the stellar model being considered. Here, we have used a Monte-Carlo approach to evaluate the nuclear uncertainty in s-process nucleosynthesis. We considered the helium burning of massive stars for the weak s-process and low-mass asymptotic-giant-branch stars for the main s-process. Our calculations include a realistic and general prescription for the temperature dependent uncertainty for the reaction cross sections. We find that the adopted uncertainty for (${rm n},gamma$) rates, tens of per cent on average, effects the production of s-process nuclei along the line of $beta$-stability, and that the uncertainties in $beta$-decay from excited state contributions, has the strongest impact on branching points.
The main s-process taking place in low mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensi ve nuclear reaction network calculations using individual and temperature-dependent uncertainties for reactions involving elements heavier than iron, within a Monte Carlo framework. Using this technique, we determined the uncertainty in the main s-process abundance predictions due to nuclear uncertainties link to weak interactions and neutron captures on elements heavier than iron. We also identified the key nuclear reactions dominating these uncertainties. We found that $beta$-decay rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are in general small (less than 50%). Three key reactions, nevertheless, stand out because they significantly affect the uncertainties of a large number of nuclides. These are $^{56}$Fe(n,$gamma$), $^{64}$Ni(n,$gamma$), and $^{138}$Ba(n,$gamma$). We discuss the prospect of reducing uncertainties in the key reactions identified in this study with future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا