ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for very high energy neutrinos with the Baikal Neutrino Telescope

51   0   0.0 ( 0 )
 نشر من قبل Dzhilkibaev Zhan-Arys
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a search for high energy neutrinos with the Baikal underwater Cherenkov detector {it NT-200.} An upper limit on the ($ u_e+tilde{ u_e}$) diffuse flux of $E^2 Phi_{ u}(E)<(1.3 div 1.9)cdot 10^{-6} {cm}^{-2} {s}^{-1} {sr}^{-1} {GeV}$ within a neutrino energy range $10^4 div 10^7 {GeV}$ is obtained, assuming an $E^{-2}$ behaviour of the neutrino spectrum and flavor ratio $( u_e+tilde{ u_e}):( u_{mu}+tilde{ u_{mu}})$=1:2.

قيم البحث

اقرأ أيضاً

The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by Fermi-GBM and INTEGRAL, indicat ing particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the TeV - 100 PeV energy range using Baikal-GVD. No neutrinos directionally coincident with the source were detected within $pm$500 s around the merger time, as well as during a 14-day period after the GW detection. We derived 90% confidence level upper limits on the neutrino fluence from GW170817 during a $pm$500 s window centered on the GW trigger time, and a 14-day window following the GW signal under the assumption of an $E^{-2}$ neutrino energy spectrum.
We present the results of a new analysis of data taken in 1998-2002 for a search for high-energy extraterrestrial neutrinos. The analysis is based on a full reconstruction of high-energy cascade parameters: vertex coordinates, energy and arrival dire ction. Upper limits on the diffuse fluxes of all neutrino flavors, predicted by several models of AGN-like neutrino sources are derived. For an ${bf E^{-2}}$ behavior of the neutrino spectrum, our limit is ${bf E^{2} F_{ u}(E) < 2.9 times 10^{-7}}$ cm${bf ^{-2}}$ s${bf ^{-1}}$ sr${bf ^{-1}}$ GeV over a neutrino energy range ${bf 2 times 10^4 div 2 times 10^7}$ GeV. This limit is by a factor of 2.8 more stringent than a limit obtained with a previous analysis.
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const ruction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV ener gy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
49 - V. Aynutdinov , et al 2005
We present the results of a search for high energy extraterrestrial neutrinos with the Baikal underwater Cherenkov detector NT200, based on data taken in 1998 - 2002. Upper limits on the diffuse fluxes of $ u_e+ u_{mu}+ u_{tau}$, predicted by several models of AGN-like neutrino sources, are derived. For an $E^{-2}$ behavior of the neutrino spectrum, our limit is $E^2 Phi_{ u}(E)<8.1 10^{-7} cm^{-2} s^{-1} sr^{-1} GeV$ over an neutrino energy range $2 10^4 - 5 10^7 GeV$. The upper limit on the resonant $bar{ u}_e$ diffuse flux is $Phi_{bar{ u}_e}< 3.3 10^{-20} cm^{-2} s^{-1} sr^{-1} GeV^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا