ترغب بنشر مسار تعليمي؟ اضغط هنا

13CI in high-mass star-forming clouds

62   0   0.0 ( 0 )
 نشر من قبل A. R. Tieftrunk
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. R. Tieftrunk




اسأل ChatGPT حول البحث

We report measurements of the 12C/13C abundance ratio in the three galactic regions G 333.0-0.4, NGC 6334 A and G 351.6-1.3 from observations of the 12CI 3P2-3P1 transition and the hyperfine components of the corresponding 13CI transition near 809 GHz. These transitions were observed simultaneously with the CO 7-6 line emission at 806 GHz with the AST/RO telescope located at the South Pole. From a simultaneous fit to the 12CI 3P2-3P1 transition and the HF components of the corresponding 13CI transition and an independent estimate of an upper limit to the optical depth of the 12CI emission we determine intrinsic 12CI/13CI column density ratios of 23+-1 for G 333.0-0.4, 56+-14 for NGC 6334 A and 69+-12 for G 351.6-1.3. As the regions observed are photon dominated, we argue that the apparent enhancement in the abundance of 13C towards G 333.0-0.4 may be due to strong isotope-selective photodissociation of 13CO, outweighing the effects of chemical isotopic fractionation as suggested by models of PDRs. Towards NGC 6334 A and G 351.6-1.3 these effects appear to be balanced, similar to the situation for the Orion Bar region observed by Keene et al. (1998).

قيم البحث

اقرأ أيضاً

135 - R. Retes-Romero 2017
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac h IRAS source using 13CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24 micron Spitzer databases.The masses for high luminosity YSOs (Lbol>10~Lsun) are determined individually using Pre Main Sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5 Msun was adopted to determine the masses in the low luminosity YSO population. The star formation rate surface density (sigsfr) corresponding to a gas surface density (siggas) in each MC is obtained by counting the number of the YSOs within successive contours of 13CO line emission. We find a break in the relation between sigsfr and siggas, with the relation being power-law (sigsfr ~ siggas^N) with the index N varying between 1.4 and 3.6 above the break. The siggas at the break is between 150-360 Msun/pc^2 for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt (1998) relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high-mass YSOs to be found preferentially in dense regions at densities higher than 1200 Msun/pc^2 (~0.25 g/cm^2).
Hydrogen fluoride has been established to be an excellent tracer of molecular hydrogen in diffuse clouds. In denser environments, however, the HF abundance has been shown to be approximately two orders of magnitude lower. We present Herschel/HIFI obs ervations of HF J=1-0 toward two high-mass star formation sites, NGC6334 I and AFGL 2591. In NGC6334 I the HF line is seen in absorption in foreground clouds and the source itself, while in AFGL 2591 HF is partially in emission. We find an HF abundance with respect to H2 of 1.5e-8 in the diffuse foreground clouds, whereas in the denser parts of NGC6334 I, we derive a lower limit on the HF abundance of 5e-10. Lower HF abundances in dense clouds are most likely caused by freeze out of HF molecules onto dust grains in high-density gas. In AFGL 2591, the view of the hot core is obstructed by absorption in the massive outflow, in which HF is also very abundant 3.6e-8) due to the desorption by sputtering. These observations provide further evidence that the chemistry of interstellar fluorine is controlled by freeze out onto gas grains.
We review how supersonic turbulence can both prevent and promote the collapse of molecular clouds into stars. First we show that decaying turbulence cannot significantly delay collapse under conditions typical of molecular clouds, regardless of magne tic field strength so long as the fields are not supporting the cloud magnetohydrostatically. Then we review possible drivers and examine simulations of driven supersonic and trans Alfvenic turbulence, finally including the effects of self-gravity. Our preliminary results show that, although turbulence can support regions against gravitational collapse, the strong compressions associated with the required velocities will tend to promote collapse of local condensations.
176 - R. Retes-Romero 2020
Ever since their discovery, Infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbour HM Young Stellar Objects (YSOs). On ly those IRDCs satisfying a certain mass-size criterion, or equivalently above a certain threshold density, are found to contain HMYSOs. In all cases, IRDCs provide ideal conditions for the formation of stellar clusters. In this paper, we study the massive stellar content of IRDCs to re-address the relation between IRDCs and HM star formation. For this purpose, we have identified all IRDCs associated to a sample of 12 Galactic molecular clouds (MCs). The selected MCs have been the target of a systematic search for YSOs in an earlier study. The catalogued positions of YSOs have been used to search all YSOs embedded in each identified IRDC. In total, we have found 834 YSOs in 128 IRDCs. The sample of IRDCs have mean surface densities of 319 Mo/pc2, mean mass of 1062 Mo, and a mass function power-law slope -1.8, which are similar to the corresponding properties for the full sample of IRDCs and resulting physical properties in previous studies. We find that all those IRDCs containing at least one intermediate to high-mass young star satisfy the often-used mass-size criterion for forming HM stars. However, not all IRDCs satisfying the mass-size criterion contain HM stars. We find that the often used mass-size criterion corresponds to 35% probability of an IRDC forming a massive star. Twenty five (20%) of the IRDCs are potential sites of stellar clusters of mass more than 100 Mo.
The high mass X-ray binaries (HMXBs) provide an exciting framework to investigate the evolution of massive stars and the processes behind binary evolution. HMXBs have shown to be good tracers of recent star formation in galaxies and might be importan t feedback sources at early stages of the Universe. Furthermore, HMXBs are likely the progenitors of gravitational wave sources (BH--BH or BH--NS binaries that may merge producing gravitational waves). In this work, we investigate the nature and properties of HMXB population in star-forming galaxies. We combine the results from the population synthesis model MOBSE (Giacobbo et al. 2018) together with galaxy catalogs from EAGLE simulation (Schaye et al. 2015). Therefore, this method describes the HMXBs within their host galaxies in a self-consistent way. We compute the X-ray luminosity function (XLF) of HMXBs in star-forming galaxies, showing that this methodology matches the main features of the observed XLF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا