ﻻ يوجد ملخص باللغة العربية
We present the combined Infrared Space Observatory Short-Wavelength Spectrometer and Long-Wavelength Spectrometer 2.4--197 micron spectrum of the Planetary Nebula NGC 6302 which contains in addition to strong atomic lines, a series of emission features due to solid state components. The broad wavelength coverage enables us to more accurately identify and determine the properties of both oxygen- and carbon-rich circumstellar dust. A simple model fit was made to determine the abundance and typical temperature of the amorphous silicates, enstatite and forsterite. Forsterite and enstatite do have roughly the same abundance and temperature. The origin and location of the dust in a toroidal disk around the central star are discussed.
Submillimetre maps of NGC 891 have been obtained with the PRONAOS balloon-borne telescope and with the ISOPHOT instrument on board the ISO satellite. In this article, we also gather data from IRAS and SCUBA to present the complete submillimetre spect
We present a three-dimensional photoionisation and dust radiative transfer model of NGC 6302, an extreme, high-excitation planetary nebula. We use the 3D photoionisation code Mocassin} to model the emission from the gas and dust. We have produced a g
NGC 6302 is one of the highest ionization planetary nebulae known and shows emission from species with ionization potential >300eV. The temperature of the central star must be >200,000K to photoionize the nebula, and has been suggested to be up to ~
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In
The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. Accurately tracing the molecule-rich equatorial regions of post-AGB stars can give valuable insight into the ejection mechanisms at work. We investigate the phy