ﻻ يوجد ملخص باللغة العربية
Observations of binaries have traditionally provided the means for ascertaining stellar masses. Here, we use the published data on 8 pre-main-sequence pairs to gauge the accuracy of our own, recently calculated, evolutionary tracks (Palla & Stahler 1999). We consider both eclipsing, double-lined spectroscopic binaries, which provide the mass of each star separately, and non-eclipsing, double-lined systems, which yield only the ratio. We also analyze the visual, quadruple system GG Tau, for which the sum of the two component masses follows from observations of the circumbinary disk. In almost all cases, our theoretically derived masses or mass ratios are in good agreement with the empirical values. For two binaries (NTTS 162814-2427 and P1540), the observational results are still too uncertain for a proper comparison. We also find that the derived contraction ages within each pre-main-sequence pair are nearly equal. This result extends earlier findings regarding visual pairs, and indicates that the components of all binaries form in proximity, perhaps within the same dense cloud core. Finally, our study reveals that the Trapezium star BM Ori is very young, since both the star itself and its companion have contraction ages less than 10^5 years.
We present a novel approach to derive the age of very young star clusters, by using the Turn-On (TOn). The TOn is the point in the color-magnitude diagram (CMD) where the pre-main sequence (PMS) joins the main sequence (MS). In the MS luminosity func
We report the discovery of two young M-dwarfs, RX J0942.7-7726 (M1) and 2MASS J09424157-7727130 (M4.5), that were found only 42 arcsec apart in a survey for pre-main sequence stars surrounding the open cluster eta Chamaeleontis. Both stars have congr
We report on Keck Interferometer observations of the double-lined binary (B) component of the quadruple pre-main sequence (PMS) system HD 98800. With these interferometric observations combined with astrometric measurements made by the Hubble Space T
We report the discovery that the pre-main sequence object LkCa3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (~0.5 arc sec) visual pair, with one component being a moder
The young system RX J0529.3+1210 was initially identified as a single-lined spectroscopic binary. Using high-resolution infrared spectra, acquired with NIRSPEC on Keck II, we measured radial velocities for the secondary. The method of using the infra