ﻻ يوجد ملخص باللغة العربية
We present a method for constructing models of weakly self-gravitating, finite dispersion eccentric stellar disks around central black holes. The disk is stationary in a frame rotating at a constant precession speed. The stars populate quasiperiodic orbits whose parents are numerically integrated periodic orbits in the total potential. We approximate the quasiperiodic orbits by distributions of Kepler orbits dispersed in eccentricity and orientation, using an approximate phase space distribution function written in terms of the Kepler integrals of motion. We show an example of a model with properties similar to those of the double nucleus of M31. The properties of our models are primarily determined by the behavior of the periodic orbits. Self-gravity in the disk causes these orbits to assume a characteristic radial eccentricity profile, which gives rise to distinctive multi-peaked line-of-sight velocity distributions (LOSVDs) along lines of sight near the black hole. The multi-peaked features should be observable in M31 at the resolution of STIS. These features provide the best means of identifying an eccentric nuclear disk in M31, and can be used to constrain the disk properties and black hole mass.
We construct dynamical models of the ``double nucleus of M31 in which the nucleus consists of an eccentric disk of stars orbiting a central black hole. The principal approximation in these models is that the disk stars travel in a Kepler potential, i
The double nucleus geometry of M31 is currently best explained by the eccentric disk hypothesis of Tremaine, but whether the eccentric disk resulted from the tidal disruption of an inbounding star cluster by a nuclear black hole, or by an m=1 perturb
Nuclear-structure effects often provide an irreducible theory error that prevents using precision atomic measurements to test fundamental theory. We apply newly developed effective field theory tools to Hydrogen atoms, and use them to show that (to t
In some galaxies, the stars orbiting the supermassive black hole take the form of an eccentric nuclear disk, in which every star is on a coherent, apsidally-aligned orbit. The most famous example of an eccentric nuclear disk is the double nucleus of
In order to be in a long-lived configuration, the density in a fluid disk should be constant along streamlines to prevent compressional (PdV) work from being done cyclically around every orbit. In a pure Kepler potential, flow along aligned, elliptic