ﻻ يوجد ملخص باللغة العربية
We review the main results from several radio, X-ray and multi-frequency surveys on the topic of cosmological evolution of BL Lacertae objects. Updated findings on BL Lac evolution following the recent identification of many sources in the ``Sedentary Multi-Frequency survey are also discussed. By means of extensive Monte Carlo simulations we test some possible explanations for the peculiar cosmological evolution of BL Lacs. We find that a dependence of the relativistic Doppler factor on radio luminosity (as expected within the beaming scenario) may induce low values of V/V_max and that both edge effects at the low luminosity end of the BL Lacs radio luminosity function, and incompleteness at faint optical magnitudes may be the cause of the low V/V_max found for extreme HBL sources in X-ray selected samples.
BL Lac objects are active nuclei, hosted in massive elliptical galaxies, the emission of which is dominated by a relativistic jet closely aligned with the line of sight. This implies the existence of a parent population of sources with a misaligned j
Observations of candidate BL Lacertae objects spectroscopically selected from the Sloan Digital Sky Survey (SDSS) reveal a large fraction with high polarization (P > 3%). This result confirms that synchrotron radiation makes an important contribution
Radio-bright BL Lacertae objects (BLOs) are typically variable and exhibit prominent flaring. We use a sample of 24 BLOs to get a clear idea of their flaring behavior and to find possible commonalities in their variability patterns. Our goal was to c
We have derived R-band host galaxy fluxes of 20 TeV candidate BL Lacertae objects as a function of aperture radius and FWHM. The results are given as correction tables, that list the fluxes (in mJy) of all ``contaminating sources (host galaxy + signi
We present new BeppoSAX LECS and MECS observations, covering the energy range 0.1 - 10 keV (observers frame), of four BL Lacertae objects selected from the 1 Jy sample. All sources display a flat (alpha_x ~ 0.7) X-ray spectrum, which we interpret as