ترغب بنشر مسار تعليمي؟ اضغط هنا

ASCA Observation of an X-Ray-Luminous Active Nucleus in Markarian 231

150   0   0.0 ( 0 )
 نشر من قبل Philip R. Maloney
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained a moderately long (100 kilosecond) ASCA observation of the Seyfert 1 galaxy Markarian 231, the most luminous of the local ultraluminous infrared galaxy (ULIRG) population. In the best-fitting model we do not see the X-ray source directly; the spectrum consists of a scattered power-law component and a reflection component, both of which have been absorbed by a column N_H approx 3 X 10^(22)/cm^2. About 3/4 of the observed hard X-rays arise from the scattered component, reducing the equivalent width of the iron K alpha line. The implied ratio of 1-10 keV X-ray luminosity to bolometric luminosity, L_x/L_bol sim 2%, is typical of Sy 1 galaxies and radio-quiet QSOs of comparable bolometric luminosities, and indicates that the bolometric luminosity is dominated by the AGN. Our estimate of the X-ray luminosity also moves Mrk 231 in line with the correlations found for AGN with extremely strong Fe II emission. A second source separated by about 2 arcminutes is also clearly detected, and contributes about 25% of the total flux.



قيم البحث

اقرأ أيضاً

We report the results from a 2011 Suzaku observation of the nearby low-ionization BAL quasar/ULIRG Markarian 231. These data reveal that the X-ray spectrum has undergone a large variation from the 2001 XMM-Newton and BeppoSAX observations. We interpr et this finding according to a scenario whereby the X-ray continuum source is obscured by a two-component partial-covering absorber with NH ~10^22 and ~10^24 cm^-2, respectively. The observed spectral change is mostly explained by a progressive appearance of the primary continuum at <10 keV due to the decrease of the covering fraction of the denser absorption component. The properties of the X-ray obscuration in Mrk 231 match well with those of the X-ray shielding gas predicted by the theoretical models for an efficient radiatively-driven acceleration of the BAL wind. In particular, the X-ray absorber might be located at the extreme base of the outflow. We measure a 2-10 keV luminosity of L(2-10) = 3.3 x 10^43 erg s^-1 for the 2011 data set, i.e. an increase of 30% with respect to the 2001 value.
112 - X. W. Shu , Y. Q. Xue , D. Z. Liu 2018
We present a multiwavelength study of an atypical submillimeter galaxy in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central AGN activity. Although it is shown that the sourc e is likely an extremely dusty galaxy at high redshift, its exact position of submillimeter emission is unknown. With the new NOEMA interferometric imaging, we confirm that the source is a unique dusty galaxy. It has no obvious counterpart in the optical and even NIR images observed with HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot be fully ruled out (at 90% confidence interval). Explaining its unusual optical-to-NIR properties requires an old stellar population (~0.67 Gyr), coexisting with a very dusty ongoing starburst component. The latter is contributing to the FIR emission, with its rest-frame UV and optical light being largely obscured along our line of sight. If the observed fluxes at the rest-frame optical/NIR wavelengths were mainly contributed by old stars, a total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral analysis suggests that this galaxy harbors a heavily obscured AGN with N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44 erg/s, which places this object among distant type 2 quasars. The radio emission of the source is extremely bright, which is an order of magnitude higher than the star-formation-powered emission, making it one of the most distant radio-luminous dusty galaxies. The combined characteristics of the galaxy suggest that the source appears to have been caught in a rare but critical transition stage in the evolution of submillimeter galaxies, where we are witnessing the birth of a young AGN and possibly the earliest stage of its jet formation and feedback.
We report on the X-ray observation of the radio selected supernova SN1979C carried out with ASCA in December 1997. The supernova of type II$_{L}$ was first observed in the optical and occurred in the weakly barred, almost face on spiral galaxy NGC 43 21 (M100) which is at a distance of 17.1 Mpc, and contains at least three other supernovae discovered in this century. No point source was detected at the radio position of SN1979C in a 3 diameter half power response circle in a 27.3 ks SIS exposure. The background and galaxy subtracted SN signal had a 3$sigma$ upper limit to the count rate of 1.2$times 10^{-3}$ cps in the full ASCA SIS band (0.4-10.0 keV). These measurements give the first ever x-ray flux limit of a Type II$_{L}$ SN in the higher energy band ($geq$ 2 keV) which is an important diagnostic of the {it outgoing} shock wave ploughing through the circumstellar medium.
424 - Ken Pounds 2001
We present the spectral analysis of an early XMM-Newton observation of the luminous Seyfert 1 galaxy Markarian 509. We find the hard (2-10 keV) continuum slope, including reflection, to be somewhat flatter ($Gamma=1.75$) than for a typical BLS1. The most obvious feature in the hard X-ray spectrum is a narrow emission line near 6.4 keV, with an equivalent width of 50 eV. The energy and strength of this line is consistent with fluorescence from `neutral iron in the molecular torus, and we note the emerging ubiquity of this feature in XMM-Newton and Chandra observations of Seyfert 1 galaxies over a wide luminosity range. We also find evidence for a second emission line at 6.7-6.9 keV, which we attempt to model by reflection from a highly ionised disc. A `soft excess, evident as an upward curvature in the continuum flux below 1.5 keV, cannot be explained solely by enhanced reflection from the ionised disc. The RGS spectrum shows only weak discrete emission and absorption features in the soft X-ray spectrum, supporting our conclusion that the soft excess emission in Mkn 509 represents the high energy portion of optically thick, thermal emission from the inner accretion disc.
98 - Stacy H. Teng 2014
We present high-energy (3--30 keV) {it NuSTAR} observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5--8 keV) data from {it Chandra}. The source wa s detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5--30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (N$_{rm H} sim1.2^{+0.3}_{-0.3}times10^{23}$ cm$^{-2}$) column. The intrinsic X-ray luminosity (L$_{rm 0.5-30 keV}sim1.0times10^{43}$ erg s$^{1}$) is extremely weak relative to the bolometric luminosity where the 2--10 keV to bolometric luminosity ratio is $sim$0.03% compared to the typical values of 2--15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope ($alpha_{rm OX}sim-1.7$). It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا