ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling Tools: Population and Evolutionary Synthesis

122   0   0.0 ( 0 )
 نشر من قبل Uta Fritze-v. Alvensleben
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

I review the basic concepts for the spectrophotometric and chemical evolution of galaxies, contrast various approaches and discuss their respective advantages and shortcomings, both for the interpretation of nearby and high redshift galaxies. Focus is on recent attempts to include gas and dust into galaxy evolution models and to account for the links among stars, gas and dust. Chemically consistent models are described that try to cope with extended stellar metallicity distributions observed in local galaxies and with subsolar abundances in young galaxies.



قيم البحث

اقرأ أيضاً

We compare six popularly used evolutionary population synthesis (EPS) models (BC03, CB07, Ma05, GALEV, GRASIL, Vazdekis/Miles) through fitting the full optical spectra of six representative types of galaxies (star-forming and composite galaxies, Seyf ert 2s, LINERs, E+A and early-type galaxies), which are taken from the Sloan Digital Sky Survey (SDSS). Throughout our paper, we use the simple stellar populations (SSPs) from each EPS model and the software STARLIGHT to do our fits. Our main results are: Using different EPS models the resulted numerical values of contributed light fractions change obviously, even though the dominant populations are consistent. The stellar population synthesis does depend on the selection of age and metallicity, while it does not depend on the stellar evolution track much. The importance of young populations decreases from star-forming, composite, Seyfert 2, LINER to early-type galaxies, and E+A galaxies lie between composite galaxies and Seyfert 2s in most cases. We conclude that different EPS models do derive different stellar populations, so that it is not reasonable to directly compare stellar populations estimated from different EPS models. To get reliable results, we should use the same EPS model for the compared samples.
257 - A. Buzzoni 2007
Taking advantage of recent important advances in the calculation of high-resolution spectral grids of stellar atmospheres at short wavelengths, and their implementation for population synthesis models, we briefly review here some special properties o f ultraviolet emission in SSPs, and discuss their potential applications for identifying and tuning up effective diagnostic tools to probe distinctive evolutionary properties of early-type galaxies and other evolved stellar systems.
We report on the discovery of a rapidly co-rotating stellar and gas component in the nucleus of the shell elliptical NGC2865. The stellar component extends ~ 0.51/h100 kpc along the major axis, and shows depressed velocity dispersion and absorption l ine profiles skewed in the opposite sense to the mean velocity. Associated with it is a young stellar population with enhanced hbeta, lowered Mg and same Fe indices relative to the underlying elliptical. Its recent star formation history is constrained by considering ``bulge+burst models under 4 physically motivated scenarios, using evolutionary population synthesis. Scenarios in which the nuclear component is formed over a Hubble time or recently from continuous gas inflow are ruled out. Our results argue for a gas-rich accretion or merger origin for the shells and kinematic subcomponent in NGC2865. Arguments based on stellar populations and gas dynamics suggest that one of the progenitors is likely a Sb or Sc spiral. We demonstrate that despite the age and metallicity degeneracy of the underlying elliptical, the age and metallicity of the kinematic subcomponent can be constrained. This work strengthens the link between KDCs and shells, and demonstrates that a KDC can be formed from a late merger.
Novae are some of the most commonly detected optical transients and have the potential to provide valuable information about binary evolution. Binary population synthesis codes have emerged as the most effective tool for modelling populations of bina ry systems, but such codes have traditionally employed greatly simplified nova physics, precluding detailed study. In this work, we implement a model treating H and He novae as individual events into the binary population synthesis code binaryc. This treatment of novae represents a significant improvement on the `averaging treatment currently employed in modern population synthesis codes. We discuss the evolutionary pathways leading to these phenomena and present nova event rates and distributions of several important physical parameters. Most novae are produced on massive white dwarfs, with approximately 70 and 55 per cent of nova events occurring on O/Ne white dwarfs for H and He novae respectively. Only 15 per cent of H-nova systems undergo a common-envelope phase, but these systems are responsible for the majority of H nova events. All He-accreting He-nova systems are considered post-common-envelope systems, and almost all will merge with their donor star in a gravitational-wave driven inspiral. We estimate the current annual rate of novae in M31 (Andromeda) to be approximately $41 pm 4$ for H novae, underpredicting the current observational estimate of $65^{+15}_{-16}$, and $0.14pm0.015$ for He novae. When varying common-envelope parameters, the H nova rate varies between 20 and 80 events per year.
To account for the range of stellar metallicities in local galaxies and for the increasing importance of low metallicities at higher redshift we present chemically consistent models for the spectral and chemical evolution of galaxies over cosmologica l timescales. We discuss advantages, limitations and future prospects of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا