ﻻ يوجد ملخص باللغة العربية
We calculate the time-dependent metal production expected from starbursts and use them as boundary conditions in our 2D simulations of evolving superbubbles. We assume that the produced metals (oxygen and iron) thoroughly mix with the ejected stellar envelopes, and/or with the matter thermally evaporated from the superbubble cold outer shell. The metal production process determines the time-dependent metallicity in hot superbubble interiors, and leads to values of Z greater or equal than solar, when oxygen is used as tracer, and under-solar when the metallicity is measured with respect to iron. In either case, the enhanced metallicity boosts the X-ray emissivity of superbubbles, bringing theory and observations closer together.
We report measurements of the cluster X-ray luminosity function out to z=0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out
Whether the X-ray luminosities of clusters of galaxies evolve has been a contentious issue for over ten years. However, the data available to address this issue have improved dramatically as cluster surveys from the ROSAT archive near completion. The
We compile one of the largest ever samples to probe the X-ray normal galaxy luminosity function and its evolution with cosmic time. In particular, we select 207 galaxies (106 late and 101 early-type systems) from the Chandra Deep Field North and Sout
We present a systematic study of the metallicity variations within the collisional ring galaxy NGC 922 based on long-slit optical spectroscopic observations. We find a metallicity difference between star-forming regions in the bulge and the ring, wit
We present detailed constraints on the metallicity dependence of the high mass X-ray binary (HMXB) X-ray luminosity function (XLF). We analyze ~5 Ms of Chandra data for 55 actively star-forming galaxies at D < 30 Mpc with gas-phase metallicities span