ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Variability of QSOs in the Optical Band

110   0   0.0 ( 0 )
 نشر من قبل Fausto Vagnetti
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new analysis of the variability of the spectral slope of PG QSOs has been performed, on the basis of recent literature data in the B and R photometric bands. Preliminary results confirm our previous findings concerning the increase of variability with the rest-frame observing frequency. We also find a correlation of the spectral slope with luminosity, consistent with temperature changes of an emitting black body.

قيم البحث

اقرأ أيضاً

In previous studies we have shown that the optical variability of quasars increases, on average, with redshift. We explained this dependance in terms of a hardening of the spectrum during bright phases, coupled with the increase of the rest-frame fre quency for increasing redshift. We re-analize now these correlations on the basis of new light curves of PG quasars, recently published by the Wise Observatory group.
108 - Alok C. Gupta ARIES 2008
We report the first results of quasi-simultaneous two passband optical monitoring of six quasi-stellar objects to search for micro-variability. We carried out photometric monitoring of these sources in an alternating sequence of R and V passbands, fo r five radio-quiet quasi-stellar objects (RQQSOs), 0748+291, 0824+098, 0832+251, 1101+319, 1225+317 and one radio-loud quasi-stellar object (RLQSO), 1410+429. No micro-variability was detected in any of the RQQSOs, but convincing micro-variability was detected in the RLQSO on two successive nights it was observed. Using the compiled data of optical micro-variability of RQQSOs till date, we got the duty cycle for micro-variability in RQQSOs is $sim$ 10%. The present investigation indicates that micro-variability is not a persistent property of RQQSOs but an occasional incident.
Light curves of eight BL Lac objects in the BVRI bands have been analyzed. All of the objects tend to be bluer when brighter. However spectral slope changes differ quantitatively from those of a sample of QSOs analyzed in a previous paper (Trevese & Vagnetti 2002) and appear consistent with a different nature of the optical continuum. A simple model representing the variability of a synchrotron component can explain the spectral changes. Constraints on a possible thermal accretion disk component contributing to the optical luminosity are discussed.
103 - Wei-Hao Bian 2012
For some samples, it has been shown that spectra of QSOs with low redshift are bluer during their brighter phases. For the FIRST bright QSO sample, we assemble their spectra from SDSS DR7 to investigate variability between the spectra from White et a l. (2000) and from the SDSS for a long rest-frame time-lag, up to 10 years. There are 312 radio loud QSOs and 232 radio quiet QSOs in this sample, up to $z sim 3.5$. With two-epoch variation, it is found that spectra of half of the QSOs appear redder during their brighter phases. There is no obvious difference in slope variability between sub-samples of radio quiet and radio loud QSOs. This result implies that the presence of a radio jet does not affect the slope variability on 10-year timescales. The arithmetic composite difference spectrum for variable QSOs is steep at blueward of $sim$ 2500AA. The variability for the region blueward of 2500 AA is different to that for the region redward of 2500 AA.
65 - Eric S. Perlman 2011
During the last decade, M87s jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from $sim 20%$ at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1s optical-UV spectrum is very hard ($alpha_{UV-O}sim0.5$, $F_ upropto u^{-alpha}$), and displays hard lags during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2$sigma$ upper limits of $0.5 delta$ parsecs and 1.02$c$ on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and looping in the $(I,P)$ plane. The nucleus has a much steeper spectrum ($alpha_{UV-O} sim 1.5$) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا