ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fading of Supernova Remnant Cassiopeia A from 38 MHz to 16.5 GHz from 1949 to 1999 with New Observations at 1405 MHz

132   0   0.0 ( 0 )
 نشر من قبل Daniel Reichart
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report 1405 MHz measurements of the flux density of the approximately 320 year old supernova remnant Cassiopeia A, relative to the flux density of Cygnus A, made between 1995 and 1999. When compared to measurements made between 1957 and 1976, we find that the rate at which Cassiopeia A has been fading at this and nearby frequencies has changed from approximately 0.9 % yr^-1 in the 1960s to approximately 0.6 - 0.7 % yr^-1 now. Furthermore, we have collected from the literature measurements of this fading rate at lower (38 - 300 MHz) and higher (7.8 - 16.5 GHz) frequencies. We show that the fading rate has dropped by a factor of approximately 3 over the past 50 years at the lower frequencies, while remaining relatively constant at the higher frequencies, which is in agreement with the findings of others. Our findings at 1405 MHz, in conjunction with a measurement of the fading rate at the nearby frequency of 927 MHz by Vinyajkin (1997), show an intermediate behavior at intermediate frequencies. We also find that Cassiopeia A, as of approximately 1990, was fading at about the same rate, approximately 0.6 - 0.7 % yr^-1, at all of these frequencies. Future measurements are required to determine whether the fading rate will continue to decrease at the lower frequencies, or whether Cassiopeia A will now fade at a relatively constant rate at all of these frequencies.



قيم البحث

اقرأ أيضاً

The first station of the Long Wavelength Array (LWA1) was used to study PSR~B0031-07 with simultaneous observations at 38 and 74~MHz. We found that 158 (0.35%) of the observed pulses at 38~MHz and 221 (0.49%) of the observed pulses at 74~MHz qualifie d as giant pulses in a total of 12 hours of observations. Giant pulses are defined as having flux densities of a factor of $geq$ 90 times that of an average pulse at 38~MHz and $geq$ 80 times that of an average pulse at 74~MHz. The cumulative distribution of pulse strength follows a power law, with an index of $-$4.2 at 38~MHz and $-$4.9 at 74~MHz. This distribution has a much more gradual slope than would be expected if observing the tail of a Gaussian distribution of normal pulses. The dispersion measure value which resulted in the largest signal-to-noise for dedispersed pulses was DM $=10.9$~pc~cm$^{-3}$. No other transient pulses were detected in the data in the wide dispersion measure range from 1 to 5000~pc~cm$^{-3}$. There were 12 giant pulses detected within the same period from both 38 and 74~MHz, meaning that the majority of them are not generated in a wide band.
Radio relics are diffuse extended synchrotron sources that originate from shock fronts induced by galaxy cluster mergers. The actual particle acceleration mechanism at the shock fronts is still under debate. The galaxy cluster 1RXS J0603.3+4214 hosts one of the most intriguing examples of radio relics, known as the Toothbrush. We present new wideband radio continuum observations made with uGMRT and VLA. Our new observations, in combination with previously published data, allowed us to carry out a detailed high spatial resolution spectral and curvature analysis of the known diffuse radio emission sources, over a broad range of frequencies. The integrated spectrum of the Toothbrush follows closely a power law over close to 2 decades in frequency, with a spectral index of $-1.16pm0.02$. We do not find any evidence of spectral steepening below 8 GHz. The subregions of the Toothbrush show an identical spectral slopes, suggesting that observed spectral index is rather set by the distribution of Mach numbers which may have a similar shape at different parts of the shock front. Indeed, numerical simulations show an intriguing similar spectral index, indicating that the radio spectrum is dominated by the average over the inhomogeneities within the shock, with most of the emission coming from the tail of the Mach number distribution. In contrast to the Toothbrush, the spectrum of the fainter relics show a high frequency steepening. The integrated spectrum of the halo follows a power law from 150 MHz to 3 GHz with a spectral index of $-1.16pm0.04$. We do not find any evidence for spectral curvature, not even in subareas of the halo. This suggest a homogeneous acceleration throughout the cluster volume. Between the brush region of the Toothbrush and the halo, the color-color analysis revealed emission that was consistent with an overlap between the two different spectral regions.
Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intra-cluster medium electrons are accelerated by cluster merger induced shock waves through the diffusive shock acceleration mecha nism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage and `Toothbrush relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the >6$sigma$ significance level, supports the spectral steepening previously found in the `Sausage and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.
We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with simulations for two very different low frequency interferometers, the Mu rchison Widefield Array (MWA) and the MIT Epoch of Reionization (MITEoR) Experiment. We then apply the method to the MITEoR data set collected in July 2013 to obtain the first northern sky map from 128 MHz to 175 MHz at about 2 degree resolution, and find an overall spectral index of -2.73+/-0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as HERA. Both the MITEoR interferometric data and the 150 MHz sky map are publicly available at http://space.mit.edu/home/tegmark/omniscope.html.
We report the detection of giant pulse emission from PSR~B0950+08 in 12 hours of observations made simultaneously at 42~MHz and 74~MHz, using the first station of the Long Wavelength Array, LWA1. We detected 275 giant pulses (in 0.16% of the pulse pe riods) and 465 giant pulses (0.27%) at 42 and 74~MHz, respectively. The pulsar is weaker and produces less frequent giant pulses than at 100~MHz. Here, giant pulses are taken as having $geq$ 10 times the flux density of an average pulse; their cumulative distribution of pulse strength follows a power law, with a index of $-$4.1 at 42~MHz and $-$5.1 at 74~MHz, which is much less steep than would be expected if we were observing the tail of a Gaussian distribution of normal pulses. We detected no other transient pulses in a wide dispersion measure range from 1 to 5000~pc~cm$^{-3}$. There were 128 giant pulses detected within in the same periods from both 42 and 74~MHz, which means more than half of them are not generated in a wide band. We use CLEAN-based algorithm to analyze the temporal broadening and conclude that the scattering effect from the interstellar medium can not be observed. We calculated the altitude $r$ of the emission region using the dipolar magnetic field model. We found $r$(42~MHz) = 29.27~km ($0.242%$ of $R_{LC}$) and $r$(74~MHz) = 29.01~km ($0.240%$ of $R_{LC}$) for the average pulse, while for giant pulses, $r$(42~MHz) = 29.10~km ($0.241%$ of $R_{LC}$) and $r$(74~MHz) = 28.95~km ($0.240%$ of $R_{LC}$). Giant pulses, which have a double-peak structure, have a smaller mean peak-to-peak separation compared to the average pulse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا