ﻻ يوجد ملخص باللغة العربية
One-time tables are a class of two-party correlations that can help achieve information-theoretically secure two-party (interactive) classical or quantum computation. In this work we propose a bipartite quantum protocol for generating a simple type of one-time tables (the correlation in the Popescu-Rohrlich nonlocal box) with partial security. We then show that by running many instances of the first protocol and performing checks on some of them, asymptotically information-theoretically secure generation of one-time tables can be achieved. The first protocol is adapted from a protocol for semi-honest oblivious transfer, with some changes so that no entangled state needs to be prepared, and the communication involves only one qutrit in each direction. We show that some information tradeoffs in the first protocol are similar to that in the semi-honest oblivious transfer protocol. We also obtain two types of inequalities about guessing probabilities in some protocols for generating one-time tables, from a single type of inequality about guessing probabilities in semi-honest oblivious transfer protocols.
We proposed the procedure of measuring the unknown state of the three-level system - the qutrit, which was realized as the arbitrary polarization state of the single-mode biphoton field. This procedure is accomplished for the set of the pure states o
Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically exten
In the Bloch sphere based representation of qudits with dimensions greater than two, the Heisenberg-Weyl operator basis is not preferred because of presence of complex Bloch vector components. We try to address this issue and parametrize a qutrit usi
Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity check
We outline a proposal for a method of preparing an encoded two-state system (logical qubit) that is immune to collective noise acting on the Hilbert space of the states supporting it. The logical qubit is comprised of three photonic three-state syste