ترغب بنشر مسار تعليمي؟ اضغط هنا

Locating Language-Specific Information in Contextualized Embeddings

127   0   0.0 ( 0 )
 نشر من قبل Sheng Liang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multilingual pretrained language models (MPLMs) exhibit multilinguality and are well suited for transfer across languages. Most MPLMs are trained in an unsupervised fashion and the relationship between their objective and multilinguality is unclear. More specifically, the question whether MPLM representations are language-agnostic or they simply interleave well with learned task prediction heads arises. In this work, we locate language-specific information in MPLMs and identify its dimensionality and the layers where this information occurs. We show that language-specific information is scattered across many dimensions, which can be projected into a linear subspace. Our study contributes to a better understanding of MPLM representations, going beyond treating them as unanalyzable blobs of information.

قيم البحث

اقرأ أيضاً

In this paper, we quantify, analyze and mitigate gender bias exhibited in ELMos contextualized word vectors. First, we conduct several intrinsic analyses and find that (1) training data for ELMo contains significantly more male than female entities, (2) the trained ELMo embeddings systematically encode gender information and (3) ELMo unequally encodes gender information about male and female entities. Then, we show that a state-of-the-art coreference system that depends on ELMo inherits its bias and demonstrates significant bias on the WinoBias probing corpus. Finally, we explore two methods to mitigate such gender bias and show that the bias demonstrated on WinoBias can be eliminated.
Gender bias is highly impacting natural language processing applications. Word embeddings have clearly been proven both to keep and amplify gender biases that are present in current data sources. Recently, contextualized word embeddings have enhanced previous word embedding techniques by computing word vector representations dependent on the sentence they appear in. In this paper, we study the impact of this conceptual change in the word embedding computation in relation with gender bias. Our analysis includes different measures previously applied in the literature to standard word embeddings. Our findings suggest that contextualized word embeddings are less biased than standard ones even when the latter are debiased.
With the emerging branch of incorporating factual knowledge into pre-trained language models such as BERT, most existing models consider shallow, static, and separately pre-trained entity embeddings, which limits the performance gains of these models . Few works explore the potential of deep contextualized knowledge representation when injecting knowledge. In this paper, we propose the Contextualized Language and Knowledge Embedding (CoLAKE), which jointly learns contextualized representation for both language and knowledge with the extended MLM objective. Instead of injecting only entity embeddings, CoLAKE extracts the knowledge context of an entity from large-scale knowledge bases. To handle the heterogeneity of knowledge context and language context, we integrate them in a unified data structure, word-knowledge graph (WK graph). CoLAKE is pre-trained on large-scale WK graphs with the modified Transformer encoder. We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks. Experimental results show that CoLAKE outperforms previous counterparts on most of the tasks. Besides, CoLAKE achieves surprisingly high performance on our synthetic task called word-knowledge graph completion, which shows the superiority of simultaneously contextualizing language and knowledge representation.
Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of topic- wise polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, utilizing a language model that has been finetuned on recognizing partisanship of the news articles, we represent the ideology of a news corpus on a topic by corpus-contextualized topic embedding and measure the polarization using cosine distance. We apply our method to a dataset of news articles about the COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the efficacy of our method to capture topical polarization, as indicated by its effectiveness of retrieving the most polarized topics.
Pretrained Language Models (LMs) have been shown to possess significant linguistic, common sense, and factual knowledge. One form of knowledge that has not been studied yet in this context is information about the scalar magnitudes of objects. We sho w that pretrained language models capture a significant amount of this information but are short of the capability required for general common-sense reasoning. We identify contextual information in pre-training and numeracy as two key factors affecting their performance and show that a simple method of canonicalizing numbers can have a significant effect on the results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا